地质力学学报  2022, Vol. 28 Issue (3): 448-463
引用本文
闵壮, 陈正乐, 潘家永, 周振菊, 张文高, 吴玉, 张涛. 黔西南架底金矿床流体包裹体研究[J]. 地质力学学报, 2022, 28(3): 448-463.
MIN Zhuang, CHEN Zhengle, PAN Jiayong, ZHOU Zhenju, ZHANG Wengao, WU Yu, ZHANG Tao. Research on fluid inclusions of the Jiadi gold deposit in southwestern Guizhou[J]. Journal of Geomechanics, 2022, 28(3): 448-463.
黔西南架底金矿床流体包裹体研究
闵壮1, 陈正乐1,2, 潘家永1, 周振菊2, 张文高2, 吴玉3, 张涛4    
1. 东华理工大学地球科学学院, 江西 南昌 330013;
2. 中国地质科学院地质力学研究所, 北京 100081;
3. 核工业北京地质研究院, 北京 100029;
4. 核工业二七〇研究所, 江西 南昌 330299
摘要:架底金矿是近年来在黔西南新发现的主要赋存于玄武岩中的大型微细粒浸染型金矿床。为查明其成矿流体特征,探讨流体成矿机制,针对矿床不同成矿阶段采取流体包裹体样品开展工作。根据野外观察和室内分析,架底金矿热液成矿期可分为3个阶段:黄铁矿阶段、烟灰色石英阶段和硫化物阶段,其中烟灰色石英阶段为主要成矿阶段。流体包裹体以NaCl-H2O和CO2-NaCl-H2O型为主,黄铁矿阶段富CO2包裹体,均一温度(Th)为211~231℃,盐度(wt)为2.10~7.60(% NaCl equiv);烟灰色石英阶段见大量NaCl-H2O和CO2-NaCl-H2O型包裹体,均一温度(Th)为182~218℃,盐度(wt)为1.40~5.90(% NaCl equiv);硫化物阶段包裹体均一温度(Th)普遍小于183℃,盐度(wt)为0.90~5.30(% NaCl equiv)。激光拉曼光谱分析显示包裹体中含CO2、CH4、N2、SO2等气相组分,随着成矿流体均一温度、盐度和密度的不断下降,包裹体中气相组分种类也趋于简单。通过计算成矿流体的ρ、P、pH、Eh和fO2等物理化学参数,表明成矿环境具有中低温、低盐度、低密度、近中性、相对还原及低氧逸度的特征。流体包裹体组合变化表明成矿作用发生在流体CO2含量不断降低的过程,主成矿阶段流体混合和区域伸展构造引起流体沸腾作用强烈,大量金属成分(黄铁矿、自然金等)快速沉淀形成金矿体。
关键词黔西南    架底金矿    流体包裹体    激光拉曼    成矿流体    
DOI10.12090/j.issn.1006-6616.2021170     文章编号:1006-6616(2022)03-0448-16
Research on fluid inclusions of the Jiadi gold deposit in southwestern Guizhou
MIN Zhuang1, CHEN Zhengle1,2, PAN Jiayong1, ZHOU Zhenju2, ZHANG Wengao2, WU Yu3, ZHANG Tao4    
1. School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China;
2. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
3. Beijing Research Institute of Uranium Geology, CNNC, Beijing 100029, China;
4. Research Institute No. 270, CNNC, Nanchang 330299, Jiangxi, China
Abstract: The Jiadi gold deposit, located in southwestern Guizhou Province, is a newly discovered large-scale basalt-hosted and fine-grained disseminated gold deposit. This article focuses on the characteristics of ore-forming fluid in order to discuss the ore-forming mechanism by the fluid inclusion analyses from different mineralization stages of the deposit. Based on the field observations and laboratory analyses, the hydrothermal ore-forming processes of the deposit can be divided into three stages: the pyritization forming-stage (1st stage), the smoky-gray quartz forming-stage (2nd stage) and the sulfide forming-stage (3rd stage), among which the smoky-gray quartz forming-stage is the primary stage. The fluid inclusions are mainly composed of NaCl-H2O and CO2-NaCl-H2O type, and CO2-rich inclusions are frequently observed in the first stage minerals, with homogenization temperature (Th) ranging from 211 to 231℃, and salinity (wt) from 2.10 to 7.60 (%NaCl equiv). There are a lot of NaCl-H2O and CO2-NaCl-H2O type of inclusions in the second stage, with the homogenization temperature (Th) changing from 182 to 218℃, and the salinity (wt) from 1.40 to 5.90 (%NaCl equiv). The homogenization temperature (Th) of the third stage is generally lower than 183℃, with the salinity (wt) varying from 0.90 to 5.30 (%NaCl equiv). The results of laser Raman spectroscopy show that the inclusions generally contain CO2, CH4, N2, SO2 and other gas-phase components. As the homogeneous temperature, salinity and density of the ore-forming fluid continue to decrease, the component types in the inclusions tend to reduce. By calculating the ρ, P, pH, Eh, and ƒO2, the ore-forming environment is characterized by low to moderate temperatures, low salinity, low density, near neutrality, relative reducibility and low oxygen fugacity. The change in fluid inclusion assemblage (FIA) indicates that the mineralization occurred as the fluid CO2 content continued to decrease. The fluid mixing in the main ore-forming stage and the regional extensional structure caused strong fluid boiling, and a large number of metal components (pyrite, natural gold, etc.) were rapidly precipitated to form gold ore bodies.
Key words: southwestern Guizhou    Jiadi deposit    fluid inclusions    laser Raman spectroscopy    ore-forming fluid    
0 引言

架底金矿床位于中国西南卡林型金成矿区——滇黔桂“金三角”内,隶属于晴隆-罗平金成矿带。矿床产出于黔西南莲花山复背斜的南东翼强变形区架底背斜处,目前是贵州省内玄武岩中发现的最大原生金矿床,为贵州省地矿局一〇五队承担的盘州市竹海镇架底金矿详查项目成果,截止2021年底提交金资源量超过60 t(李俊海,2021)。矿体呈上下两侧波状起伏展布,以玄武质角砾岩矿石类型为主,与黔西南典型卡林型金矿存在一定差异。架底金矿床的矿石矿物以微细粒自然金、含砷黄铁矿、毒砂等为主,可见大量石英、方解石等脉石矿物,后者封存的流体包裹体基本代表成矿时流体组成,对还原成矿流体来源、化学组成和物理环境具有重要作用(范宏瑞等,1997夏勇,2005卢焕章,2019)。

架底金矿床作为区内以玄武岩为主要赋矿围岩的大型微细粒浸染型金矿,有学者针对矿床地质、矿物组合和围岩蚀变等方面开展基础性研究,同时提出同类型金矿找矿标志并进行了找矿潜力分析(曾昭光,2014胡承伟,2015);何金坪等(2018)赵富远等(2018)通过微量元素和氢、氧、硫同位素来探讨架底金矿体与围岩的关系及成矿物质来源;曾国平(2018)认为层间破碎带和构造蚀变体(SBT)是莲花山金矿体两个主要的赋矿构造,利用同位素地球化学和地球物理勘探手段认为金成矿与燕山期隐伏岩体存在紧密联系;田冲等(2021)利用电子探针技术开展黄铁矿原位分析,认为含砷环带状黄铁矿为主要的载金矿物;张涛等(2020)认为硫化作用是形成不可见金的关键因素,李俊海(2021)开展大量分析测试工作,提出与深部花岗岩有关的玄武岩容矿金矿床成矿模式。王大福(2015)李俊海(2021)也报道了架底矿床流体包裹体均一温度和盐度等参数。为深入探索成矿流体化学组成、物理性质及演化过程,在已有研究和野外工作基础上,文章通过详细划分黔西南架底金矿床热液成矿期与成矿阶段,并对不同成矿阶段热液矿物开展显微测温和激光拉曼光谱研究工作,以此探讨架底金矿成矿流体组成、性质、来源及演化规律,进一步揭示架底金矿流体成矿作用机制,为该区矿床勘查及科学研究提供新的支撑。

1 区域地质背景

右江盆地位于特提斯构造域东部与环太平洋构造域西缘的结合区域,思茅地块、华夏地块和扬子地块的交界处(颜丹平等,2002聂冠军等,2020),大致以北东向师宗-弥勒断裂带、东西向个旧-宾阳断裂带、北西向紫阳-南丹断裂带为界(图 1a),经历大陆边缘裂谷盆地、弧后盆地、弧后前陆盆地和山间盆地演化阶段,基本分别对应于古特提斯洋的伸展、俯冲、闭合和造山作用(吴福元等,2003Lehrmann et al., 2007)。加里东运动使扬子板块与华夏地块拼接形成华南褶皱系,海西运动开始沉积正常的碎屑岩、喷发溢流火山岩、海相碳酸盐岩和热水成因硅质岩,印支-燕山的板块聚合伴随岩浆侵入、陆壳隆升及构造活动,喜马拉雅造山运动板内挤压形成山间盆地且对矿床有破碎作用(华仁民等,2005)。莲花山背斜位于紫云-南丹构造带、师宗-弥勒断裂带的交汇点南侧(图 1a)(Hu et al., 2017)。背斜枢纽呈北东-南西向,东起普安县莲花山,西至盘县石桥镇大地,长约40 km,宽9~20 km。

a—右江盆地构造简图;b—架底金矿床构造地质简图;c—莲花山背斜地质构造及微细浸染型金矿产地分布示意图
1—下三叠统永宁镇组一段;2—下三叠统飞仙关组二段;3—下三叠统飞仙关组一段;4—上二叠统大隆组;5—上二叠统长兴组;6—上二叠统龙潭组;7—上二叠统峨眉山玄武岩组;8—中二叠统茅口组;9—中二叠统栖霞组;10—中二叠统梁山组;11—上石炭统马平组;12—上石炭统黄龙组;13—下石炭统摆佐组;14—下石炭统大塘组;15—下石炭统岩关组;16—上泥盆统代化组;17—构造蚀变体(SBT);18—背斜轴;19—向斜轴;20—逆断层及编号;21—正断层及编号;22—性质不明断层;23—地质界限;24—勘探线位置及编号;25—大型金矿床;26—中型金矿床;27—小型金矿床;28—金矿点;29—地理位置及名称
(a)Simplified tectonic map of the Youjiang basin; (b)Structural geologic sketch map of the Jiadi gold deposit; (c)Sketch map of the geologic structure and distribution of disseminated gold deposits in the Lianhuashan anticline area
1-First section of the Yongningzhen Formation; 2-Second section of the Feixianguan Formation; 3-First section of Feixianguan Formation; 4-Dalong Formation; 5-Changxing Formation; 6-Longtan Formation; 7-Emeishan Basalt Formation; 8-Maokou Formation; 9-Qixia Formation; 10-Liangshan Formation; 11-Maping Formation; 12-Huanglong Formation; 13-Baizuo Formation; 14-Datang Formation; 15-Yanguan Formation; 16-Daihua Formation; 17-Structural alteration body(SBT); 18-Synclinal axis; 19-Anticlinal axis; 20-Reverse faults and their numbers; 21-Normal faults and their numbers; 22-Ill-defined fault; 23-Geologic boundary; 24-Exploration line and its number; 25-Large gold deposits; 26-Medium gold deposits; 27-Small gold deposits; 28-Gold occurrence; 29-Geolocation
图 1 莲花山背斜地质构造及微细浸染型金矿产地分布示意图(据何金坪等,2018修改) Fig. 1 Sketch map of the geologic structure and distribution of disseminated gold deposits and occurrences in the Lianhuashan anticline area(modified from He et al., 2018)

区内出露地层主要有:上泥盆统代化组(D3d)泥质条带灰岩;下石炭统岩关组(C1y)灰岩夹白云岩;下石炭统大塘组(C1d)泥质灰岩夹白云岩;下石炭统摆佐组(C1b)厚层白云岩;上石炭统黄龙组(C2hl)块状生物灰岩,偶夹白云质灰岩;上石炭统马平组(C2mp)生物灰岩,夹砾屑灰岩;中二叠统梁山组(P2l)黏土岩,夹石英砂岩和灰岩;中二叠统栖霞组(P2q)生物碎屑灰岩,含燧石团块;中二叠统茅口组(P2m)厚层块状生物碎屑灰岩,夹燧石团块或条带;上二叠统峨眉山玄武岩组(P3β)拉斑玄武岩夹火山碎屑岩;上二叠统龙潭组(P3l)细砂岩、黏土岩及粉砂岩,夹灰岩和煤;上二叠统长兴组(P3c)深灰—黑色中厚层灰岩,偶见中薄状燧石夹层;上二叠统大隆组(P3d)深色含化石砂岩及页岩;下三叠统飞仙关组(T1f)中细粒岩屑砂岩、粉砂岩和黏土岩,偶夹灰岩;下三叠统永宁镇组(T1yn)泥质灰岩及灰岩;第四系(Q4)黏土砂砾混合物。茅口组顶部不整合面为黔西南区域成矿结构面(SBT;张蕾等,2012),峨眉山玄武岩二段(P3β2)火山角砾岩为莲花山地区主要产矿层位。

莲花山成矿带为主体呈北东向展布的复式背斜构造,总体向南东倾伏,其核部为上述泥盆系、石炭系,两翼出露二叠系中统茅口组、上统峨眉山玄武岩组。区内断裂构造较为发育,规模相对较小,以北东、近南北向为主,其次为北西、近东西向延伸,北东向断层与背斜走向相对一致,且多沿背斜轴部附近发育,以(正)平移断层、逆断层为主,具多期层间滑动、复杂热液蚀变联合作用的特点(图 1b何金坪等,2018)。架底金矿位于莲花山背斜南东翼强变形区(图 1c),是区内规模最大的金矿床,具有勘查程度高、构造控矿特征明显等特点,并与大麦地、红岩洞、陇英大地、砂锅厂、砂厂、旧寨、炼山坡、老寨、谭家梁子等金矿(点)共同组成莲花山成矿带(刘远辉等,2002吴小红等,2013彭义伟等,2014王大福,2014)。

2 矿床地质特征

根据架底金矿(含)矿体产出的空间、构造及层位特征,将其分为上、下两层金矿体:下层产于中二叠统茅口组(P2m)灰岩与上二叠统峨眉山玄武岩组(P3β)之间的沉积间断面上,因该层具有特殊的构造和蚀变特征,且标志明显、分布广泛、研究深入而被称为构造蚀变体(SBT;刘建中等,2009);上层产于上二叠统峨眉山玄武岩组二段(P3β2)强蚀变火山角砾岩内,在玄武质岩石的热液蚀变构造破碎带内(图 2图 3a)。上、下两层金矿体在平面上主要以不规则波状起伏于架底复背斜的800~1000 m范围内,该面下沉部位矿体往往偏厚,其中下层矿体总体偏南,而上层矿体略微偏北,两层金矿体垂直间距为14~98 m。

图 2 架底金矿床7号勘探线剖面图(位置见图 1b;据何金坪等,2018修改) Fig. 2 Cross-section of the No.7 exploration line of the Jiadi gold deposit (shown in fig. 1b; modified from He et al., 2018)

a—架底金矿上层矿体露头;b—架底金矿下层矿体(SBT)钻孔岩心松散矿石;c—烟灰色石英阶段石英+黄铁矿细脉;d—蚀变火山角砾岩型矿石中3个阶段热液矿物的分布情况;e—烟灰色石英阶段细脉状黄铁矿;f—烟灰色石英阶段烟灰色含金石英脉;g—显微镜下黄铁矿阶段半自形—他形浸染状黄铁矿;h—显微镜下烟灰色石英阶段团块状黄铁矿;i—显微镜下烟灰色石英阶段细脉状黄铁矿;j—显微镜下硫化物阶段自形黄铁矿;①-、②-、③-分别表示黄铁矿、烟灰色石英和硫化物成矿阶段;Py表示黄铁矿;Q表示石英 (a) Photo showing upper ore-body outcrops of the Jiadi gold deposit; (b) Photo showing loose ores in drill core, lower orebody (SBT) of the Jiadi gold deposit; (c) Specimen of Quartz+pyrite vein of the smoky gray quartz stage; (d) Specimen showing the distribution of hydrothermal minerals of the three stages in altered volcanic breccia type ore; (e) Specimen of veined pyrite of the smoky gray quartz stage; (f) Specimen of smoky gray gold-bearing quartz vein of the smoky gray quartz stage; (g) Microscopic photo of subhedral-euhedral disseminated pyrite of the pyrite stage; (h) Microscopic photo of massive pyrite of the smoky gray quartz stage; (i) Microscopic photo of veined pyrite of the smoky gray quartz stage; (j) Microscopic photo of euhedral pyrite of sulfide stage; ①, ②, ③ represent the pyrite, smoky gray quartz and sulfide mineralization stage respectively; Py stands for pyrite; Q stands for quartz 图 3 架底金矿床3个成矿阶段矿石手标本及显微镜下照片 Fig. 3 Hand specimens and microscopic photographs showing the three ore-forming stages of the Jiadi gold deposit

下层含矿体在空间上与构造蚀变体分布范围大致重合,多以似层状、波状展布,以灰岩、凝灰岩和玄武岩等复杂构造岩为主。矿石呈松散状(图 3b),普遍发生硅化、黄铁矿化、毒砂化、雄/雌黄化、伊利石化等热液蚀变。矿体长150~300 m,宽110~260 m,倾向南东或北西,倾角6°~34°。矿体在横剖面上呈“V”字形,中间底部较厚,两边迅速变薄。工程控制矿体垂直厚度1.01~16.76 m,品位为1.12~3.15 g/t(何金坪等,2018)。

上层含矿体在空间上沿架底褶皱层分布,与峨眉山玄武岩组二段(P3β2)中的蚀变火山角砾岩分布有关(图 3a3c)。含矿体以蚀变火山角砾岩型矿石为主,普遍发生硅化、黄铁矿化、毒砂化等蚀变现象,岩性较为完整,常被热液矿物固结(图 3d3f)。矿体长410 m,宽40~260 m,横剖面上呈“V”字形,具有中间厚两翼薄的特点,倾角8°~22°。工程控制矿体垂直厚度1.10~29.0 m,品位为1.10~6.20 g/t(田冲等,2021)。

架底金矿主要为玄武岩型原生金矿石,次要为表生氧化矿石;自然类型有玄武质火山角砾岩型和热液蚀变-胶结构造角砾岩型(SBT)。金属矿物以自然金、黄铁矿、毒砂为主,其次为雄黄、雌黄、辉锑矿、赤铁矿、褐铁矿等,具有多阶段相互穿切和包含特点,黄铁矿从早到晚可分为半自形—他形粒状(图 3g)、不规则细脉状(图 3h3i)和自形粒状(图 3j)。非金属矿物以石英和方解石为主,大致分为烟灰色石英+细晶方解石+细脉状黄铁矿矿物组合(图 3f)和粗晶粗脉状无色透明石英±方解石±浸染状黄铁矿组合(图 3d),分别与细脉状黄铁矿和自形粒状黄铁矿相对应,其次产出铁白云石、伊利石、菱镁矿、金红石和绿泥石等。黄铁矿赋存形态多样,可见构造蚀变体(SBT)、火山角砾岩中的半自形—他形浸染状黄铁矿(图 3g)、玄武岩中的细网脉状(图 3h)和团块状(图 3i)黄铁矿,自形—半自形粒状黄铁矿(图 3j)等,其中黄铁矿、毒砂、烟灰色石英与金成矿有着明显的成因联系。

以野外观察和室内鉴定工作为基础,架底金矿床成矿分为热液成矿期和表生成矿期(图 4),其中热液成矿期又可分为3个阶段:①黄铁矿阶段,在两层矿体中都有发育,表现在SBT、凝灰岩和玄武岩中形成粒径较小的半自形—他形粒状黄铁矿,呈稀疏浸染状分布于赋矿岩石中(图 3f3g),为相对较早形成的金属矿化现象,同时产出少量石英、毒砂等矿物,基本无矿化;②烟灰色石英阶段,在不同部位的矿体中广泛发育,以烟灰色石英脉中常见含金细脉状黄铁矿(图 3i)为特点的主要成矿阶段,其次产出含黄铁矿的微晶方解石脉,此处石英和方解石为流体包裹体测试的目标矿物,其次见毒砂、辉锑矿、雄黄、雌黄等金属矿物,见铁白云石、菱镁矿、金红石、伊利石等热液矿物(李俊海,2021),常发育交代、环带和裂隙等现象(图 3h),切穿早阶段黄铁矿晶体,为区内主要的金矿化阶段;③硫化物阶段,以上层矿体发育为主,表现为相对粗大的石英和方解石脉内可见自形—半自形黄铁矿(图 3j)、雄黄、绿泥石和辉锑矿等,穿切或包裹早期形成的热液矿物,该阶段矿化极少(王大福,2015)。架底金矿床典型热液矿物特征如下文介绍。

图 4 架底金矿床矿物生成顺序图 Fig. 4 Diagram of mineral formation sequence in the Jiadi gold deposit

(1) 黄铁矿:以半自形—他形为主,呈浸染状、脉状、团块状集合体分布,粒径10~300 μm,在玄武岩和灰岩等围岩中未见产出,在热液成矿期集中产出,其中含砷黄铁矿为区内典型载金矿物。

(2) 毒砂:呈半自形为主,与黄铁矿分布特征类似,粒径5~80 μm,主要产于烟灰色石英阶段和硫化物阶段,为区内重要的含金矿物之一。

(3) 石英:呈脉状、团块状产出,呈无色透明、褐色、烟灰色等,为区内最重要的脉石矿物之一,石英本身不含金,但是金成矿的重要标志矿物。

(4) 方解石:以微—细晶状集合体为主,呈不同形态的脉状产出,硫化物结晶程度相对较好,烟灰色石英阶段常见方解石包裹黄铁矿等金属矿物现象。

3 流体包裹体组合 3.1 样品采集

共采集25件流体包裹体样品,以31号勘探线9号钻孔为主,其中ZK3109-1采自构造蚀变体(SBT)中、ZK3109-12为峨眉山玄武岩组三段(P3β3)含矿炭质沉凝灰岩,其他均为峨眉山玄武岩组二段(P3β2)火山角砾岩矿石(表 1表 2)。在上文详细划分热液成矿期不同阶段的基础上,将脉体圈定并制作流体包裹体薄片(图 3c),开展石英和方解石中流体包裹体显微测温和激光拉曼光谱分析(表 1表 2),可以获得其成矿流体化学成分和物理参数,最后对成矿流体的组成、性质、来源和演化进行探讨。

表 1 两相NaCl-H2O型流体包裹体参数 Table 1 Parameters of two-phase NaCl-H2O fluid inclusions

表 2 两相CO2-NaCl-H2O型流体包裹体参数 Table 2 Parameters of two-phase CO2-NaCl-H2O fluid inclusions
3.2 岩相学特征

原生包裹体是指在晶体生长过程中被捕获的流体,假次生包裹体是在晶体生长过程中产生裂隙而捕获的类似次生包裹体的原生流体,而次生流体包裹体可以在宿主晶体生长后的任何时间被捕获。架底金矿床流体包裹体岩相学特征如图 5所示,根据室温下观察到的脉体穿切关系(图 5a)、流体包裹体组合和室温下(20 ℃)包裹体相态特征,查明包裹体以原生和假次生包裹体为主(图 5b),偶见次生包裹体(图 5c)结合流体包裹体的显微激光拉曼光谱的测试结果,将架底金矿不同成矿阶段的流体包裹体划分为NaCl-H2O型(A型)、CO2-NaCl-H2O型(B型)。

FIA表示流体包裹体组合;LH2O表示液相H2O;VH2O表示气相H2O;LCO2表示液相CO2;VCO2表示气相CO2
a—相互穿切的石英脉,脉内可见大量细小金属矿物产出;b—发育良好环带的石英晶体;c—沿石英晶体裂隙分布的次生包裹体;d—红色虚线之间流体包裹体条带为流体包裹体组合(FIA);e—硫化物阶段纯液相包裹体;f—黄铁矿阶段富液相流体包裹体;g—可见硫化物阶段包裹体“卡脖子”现象;h—烟灰色石英阶段含CO2两相包裹体;i—烟灰色石英阶段含CO2三相包裹体
(a)Interpenetrating quartz veins with large amounts of fine metallic minerals; (b)Quartz crystal with well zonal texture; (c)Secondary inclusions distributed along the fractures of quartz crystals; (d)The fluid inclusion band between red dotted lines is a fluid inclusion assembly (FIA); (e)Pure liquid inclusions of the sulfide stage; (f)Liquid-rich fluid inclusions of the pyrite stage; (g)"Neck-locked" phenomenon of inclusion in sulfide stage; (h)Two-phase inclusions containing CO2 of smoky gray quartz stage; (i)Three-phase inclusions containing CO2 of smoky gray quartz stage
FIA stands for fluid inclusion assembly; LH2O represents liquid phase H2O; VH2O represents gaseous phase H2O; LCO2 represents liquid phase CO2; VCO2 represents gaseous phase CO2
图 5 架底金矿床流体包裹体岩相学特征 Fig. 5 Petrographic characteristics of fluid inclusions in the Jiadi gold deposit

(1) NaCl-H2O型包裹体(A型)

此类包裹体由NaCl和H2O组成,室温下按相态可分为单相NaCl-H2O型(A1型;图 5e)和两相NaCl-H2O型(A2型;图 5f),在数量上以后者为主。包裹体在石英和方解石矿物晶体中都较为发育,多呈椭球状、线状、小群状分布,偶见“卡脖子”现象(图 5g),大小3~12 μm,个别达12 μm以上,形态为负晶形、椭圆形、棒球形及不规则形,气/液体积比2%~9%。

(2) CO2-NaCl-H2O型包裹体(B型)

该类包裹体以含有相对较多的CO2为特点,可分为两相CO2-NaCl-H2O型(B1型;图 5h)、三相CO2-NaCl-H2O型(B2型; 图 5i),前者相对三相CO2-NaCl-H2O型较为发育,尤其产于烟灰色石英阶段样品中。多成弥散状(图 5e)、带状(图 5d)、团块状(图 5g)展布,在方解石中仅见少量分布,常与NaCl-H2O型包裹体共生,大小4~14 μm,个别可达20 μm以上,形态多呈不规则形、椭球形,气/液体积比4%~13%。可见少量包裹体含CH4、N2等气相成分(图 5h5i)。

3.3 流体包裹体显微测温

采用均一法、冷冻法测定上述样品中流体包裹体。在测定均一温度时早期升温速率为15.0 ℃/min,接近相变时升温速率下降至1.0 ℃/min、0.5 ℃/min,注意观察包裹体相变并记录;冰点测定时早期以10 ℃/min速率快速下降,大约降至-50 ℃后再逐渐升温,升温速率由开始时的10 ℃/min降低至2 ℃/min,接近相变时的升温速率再降至0.2 ℃/min,获得相关参数见表 1表 2。包裹体显微测温在中国地质科学院地质力学研究所流体包裹体实验室进行,具体仪器参数和实验流程见文献范宏瑞等(2005)

显微测温结果显示,架底金矿体中A型包裹体在热液成矿期第不同成矿阶段形成的石英和方解石中均有发育,包裹体的初熔温度-26.6~-20.3 ℃,冰点温度-4.8~-0.5 ℃,均一温度162~231 ℃(表 1表 2图 6a),盐度0.9~7.6(%NaCl equiv)(表 1表 2图 6b),密度0.860~0.931 g/cm3。结果显示第1阶段均一温度约211~231 ℃,第2阶段见均一温度182~218 ℃,第3阶段均一温度普遍小于183 ℃。流体盐度可利用NaCl-H2O体系盐度-冰点计算公式:

$ w t=0.00+1.78 T_{\mathrm{m}}-0.0442 T_{\mathrm{m}}^{2}+0.000557 T_{\mathrm{m}}^{3} $ (1)
图 6 架底金矿床热液成矿期流体包裹体均一温度和流体盐度值频数直方图 Fig. 6 Frequency histogram of fluid inclusions in the Jiadi gold deposit

该公式仅适用于盐度0%~23.3%的两相H2O-NaCl型包裹体,其中wt为盐度(%NaCl equiv),Tm为冰点温度(℃)。密度的估算是利用NaCl-H2O体系的均一温度-盐度公式(刘斌和段光贤,1987)求得:

$ D=A+B t+C T_{\mathrm{h}}^{2} $ (2)

D为流体密度, g/cm3Th为均一温度,℃;ABC为无量纲参数(盐度的函数)。

架底金矿床中B型包裹体主要分布于黄铁矿阶段和烟灰色石英阶段,包裹体测温结果显示其初熔温度-59.0~-56.0 ℃,笼形物熔化温度4.0~9.8 ℃,均一温度179.0~229.0 ℃,盐度1.2~7.2(%NaCl equiv),密度0.857~0.969 g/cm3。黄铁矿阶段的均一温度和盐度均高于烟灰色石英阶段和硫化物阶段,硫化物阶段流体包裹体CO2含量等气相组分迅速降低。流体盐度可利用公式:

$ w t=15.52022-1.02342 T_{m}-0.05286 T_{m}^{2} $ (3)

公式中wt为盐度,%NaCl equiv;Tm为冰点温度,℃。流体密度可根据上述均一温度和盐度数值,在CO2-NaCl-H2O体系参数表得出。

3.4 激光拉曼光谱分析

激光拉曼测试在核工业北京地质研究院完成,具体仪器参数及测试方法请参考文献(邱林飞等,2019)。针对不同阶段形成的流体包裹体利用激光拉曼分析方法,结果显示:总体以NaCl-H2O型为主(图 7a7b),其次为CO2-NaCl-H2O型包裹体,其中后者常见CH4、SO2、H2S、N2等气相组分。

a—黄铁矿阶段NaCl-H2O型气液两相包裹体;b—烟灰色石英阶段含少量气相组分的NaCl-H2O型气液两相包裹体;c—烟灰色石英阶段含少量CO2三相包裹体;d—硫化物阶段含CO2、CH4、N2两相包裹体 (a)NaCl-H2O type gas-liquid two-phase inclusions of the pyrite stage; (b)NaCl-H2O type gas-liquid two-phase inclusions containing a small amount of gas-phase components of the smoky gray quartz stage; (c)Three-phase inclusions containing a small amount of CO2 of the smoky gray quartz phase; (d)Two-phase inclusions containing CO2, CH4 and N2 of the sulfide stage 图 7 架底金矿床流体包裹体激光拉曼光谱特征 Fig. 7 Laser Raman spectroscopy characteristics of fluid inclusions in the Jiadi gold deposit

黄铁矿阶段包裹体组分相对简单,以H2O和NaCl为主,其次可见CO2;烟灰色石英阶段包裹体组分较为复杂,可见CO2、CH4、SO2、H2S、N2等气相组分(图 7c7d),还原性气体指示流体具相对氧化的环境(姚娟,2008);硫化物阶段流体包裹体细小且繁多,拉曼光谱显示其气相组分主要是H2O;将激光拉曼分析结果与流体包裹体岩相学特征、显微测温等综合对比,发现黄铁矿阶段流体更富CO2,烟灰色石英阶段流体可见种类较多的还原性气体,伴随着流体演化呈降低趋势。

3.5 成矿流体压力与深度估算

上文中均一温度(Th)是在室温常压条件下测得的,并不能反应流体包裹体真实捕获温度,而仅能反应最低的成矿环境温度,所以由此获得的压力值也只能反应最低的成矿流体压力(卢焕章,2008)。有学者针对包裹体如何计算成矿压力,提出诸多计算方法和理论公式,尤其是压力灵敏的含CO2包裹体更是研究广泛(毛景文和李荫清,2001聂利青等,2019)。利用中国地质调查局武汉地质调查中心开发的成矿流体压力计算模拟软件,结合H2O-CO2体系的P-T图解,利用上述温度数据开展成矿压力计算,结果为26.4~64.2 MPa,平均为42.3 MPa。成矿深度(h)可依据静岩压力计算公式得出:

$ P=\rho g h $ (4)

公式中P为成矿压力;ρ为上覆碳硅泥岩建造平均密度,取值2.6 g/cm3g为重力加速度,取值9.8 m/s2h为所求的成矿深度(黄锡强;2008韩雪,2012)。经计算得到架底金成矿的成矿深度(h)为1.0~2.43 km,平均为1.60 km。成矿深度变化范围相对较大,可能与样品差异和矿化类型有关。

3.6 pH值、Eh值与fO2估算

因为样品中的流体包裹体以NaCl-H2O型偏多,所以选择NaCl-H2O体系水溶液包裹体计算公式获得pH值与Eh值(刘斌,2011),进而反映成矿期热液流体的性质。结果显示架底金矿成矿流体的pH值为5.5~6.2,Eh值为0.084~0.324V,且当pH和Eh值分别为5.8、0.258V时,最有利金的沉淀成矿。

浸染状金矿床的矿石中富硫化物矿物的特点,使对其成矿流体氧逸度(fO2)的研究显得相对重要,其中S的迁移状态、含S化合物电离度和S离子与其他金属阳离子的结合能力,对成矿流体中成矿物质的运移和富集具有重要作用(陈懋弘等,2007)。利用刘斌(2011)所述公式进行计算,结果表明架底金矿床成矿流体的lgfO2主要集中于-42.46~-38.25,显示其成矿时处于氧逸度较低的流体环境。

4 讨论 4.1 成矿流体性质及来源

研究结果表明,架底金矿流体包裹体类型主要为NaCl-H2O型、CO2-NaCl-H2O型,后者的气相组分体积4%~13%,含有少量的CO2。CO2-NaCl-H2O型包裹体初熔温度为-59.0~-56.6 ℃,比纯CO2的三相点温度(-56.6 ℃)略低,表明包裹体有少量CH4、CO、H2S、N2等气相成分存在。显微测温结果显示流体包裹体均一温度分布在162~235 ℃,主要集中于200~220 ℃,流体盐度(%NaCl equiv)主要集中在0.9%~7.6%,流体密度主要集中在0.860~0.931 g/cm3。流体包裹体热力学参数估算表明成矿流体的pH值为5.5~6.2,Eh值为0.084~0.324V,lgfO2主要集中于-42.46~-38.25。综合所述,成矿热液具中低温、低盐度、低密度、近中性、相对还原及低氧逸度的特征,并含CO2及少量的还原性气体。

关于滇黔桂邻接区微细浸染型金矿成矿流体来源有如下观点:岩浆流体(刘建中等,2006Large et al., 2016Zhuo et al., 2019)、变质流体(Su et al., 2008, 2011)、大气降水(国家辉,2002陈本金等,2010)、盆地流体(刘建明和刘家军,1997陈懋弘等,2007)及幔源流体(刘显凡等,1996)。其中有学者对架底金矿开展氢氧同位素研究(赵富远等,2018曾国平,2018),显示架底金矿床成矿流体主要为与岩浆水有关的流体,可能存在与变质水和大气降水的混合。这与主成矿阶段富CO2、CH4、N2、H2S流体包裹体的广泛出现相吻合(Su et al., 2011),其中相对还原的流体环境也指示深部热液来源,热液演化过程进一步佐证此观点。

4.2 成矿流体演化与沉淀

为探讨黔西南矿集区不同金矿床成矿温度有无差异,讨论成矿作用是受区域地幔柱或局部岩浆岩体控制,自南西至北东方向分别选取烂泥沟、戈塘、泥堡金矿床,收集已有报道的烂泥沟、戈塘和泥堡成矿期流体包裹体数据平均值(表 3),与架底金矿在均一温度、盐度、流体密度和流体压力方面进行对比。4个矿床均产在短轴背斜构造附近(分别为莲花山背斜、赖子山背斜、戈塘背斜和灰家堡背斜),结果显示4个矿床的均一温度和盐度呈消长一致的特点,且泥堡和烂泥沟的值明显大于架底和戈塘的值。流体密度与均一温度、盐度的变化趋势相反,呈此消彼长的特点,流体压力变化范围不大表现出从架底至烂泥沟逐渐降低之势(图 8a)。综合可见,黔西南不同微细浸染型金矿成矿流体物化参数差异明显,且从架底→泥堡→戈塘→烂泥沟的地理直线(北西—南东走向)上,成矿深度逐渐变浅,成矿温度呈锯齿状变化。

表 3 黔西南主要微细浸染状金矿床成矿流体包裹体物理参数表 Table 3 Physical parameters of ore-forming fluids of prime fine-disseminated gold deposits in southwestern Guizhou

a—黔西南主要微细浸染型金矿床成矿流体物理参数图;b—架底金矿成矿流体均一温度和盐度散点图 (a)Map of physical parameters of ore-forming fluids of main fine disseminated gold deposits in southwestern Guizhou; (b)Scatter diagram of homogenization temperature and salinity of ore-forming fluid from the Jiadi gold deposit 图 8 黔西南主要微细浸染型金矿床与架底金矿成矿流体物理参数图(泥堡数据郑禄林,2017;戈塘数据杜放,2017;烂泥沟数据韩雪,2012) Fig. 8 Physical parameters of ore-forming fluids of main fine disseminated gold deposits and the Jiadi gold deposit in Southwestern Guizhou(The data of Nibao from Zheng, 2017; The data of Getang from Du, 2017; The data of Lannigou from Han, 2012)

根据架底金矿床均一温度-盐度散点(图 8b),可见随着均一温度的降低,盐度同时减小,指示该过程存在流体混合现象,这一现象是烟灰色石英阶段均一温度和盐度变化范围较大的重要原因。流体包裹体初熔温度与均一温度同步降低的过程,主要是因为流体减压和混合导致Ca2+的大量沉淀, 从而导致流体组分逐渐富集NaCl等(聂利青等,2019),盐度-频数直方图(图 6)亦呈正态分布,同样说明存在不同盐度热液混合。与上文流体包裹体激光拉曼分析结果相吻合,烟灰色石英阶段发育更多的含CO2包裹体,成矿环境整体发育在温度下降、压力降低、组分减少的过程,发生流体混合和水岩反应。

黔西南矿集区在燕山晚期发生强烈的伸展构造运动(张荣强等,2009曾国平,2018),导致隐伏岩浆上侵并分异晚期岩浆流体(胡瑞忠等,1995),富CO2含金络合物沿着陡峭断裂承压上升,与脱水变质流体、下渗大气降水所混合(Hu et al., 2017),在成矿流体进入相对水平的火山角砾岩和层间破碎带后,地球化学环境变化(尤其是温度压力降低和玄武岩蚀变等因素)导致气相组分在热液中溶解度变小,初始均一相流体沸腾分离为H2O-NaCl和CO2-H2O流体,成矿流体携带成矿物质伴随流体减压降温,Ca2+、As3+、Au2+、Fe2+、S2-、Cl-等发生结合,以自然金、石英、黄铁矿、铁白云石、方解石、毒砂等矿物形式在有利的空间中发生沉淀富集(朱赖民等,1997)。

5 结论

(1) 架底金矿是主要产于中二叠统峨眉山玄武岩组二段(P3β2)强蚀变火山角砾岩内,其次为产于上二叠统茅口组(P2m)与中二叠统峨眉山玄武岩组(P3β1)之间不整合界面中的微细粒浸染型金矿床。金成矿过程可分为热液成矿期和表生期,其中热液成矿期可分为3个成矿阶段:黄铁矿阶段、烟灰色石英阶段和硫化物阶段,烟灰色石英阶段为主要金成矿阶段。

(2) 架底金矿流体包裹体类型有NaCl-H2O和CO2-NaCl-H2O型,黄铁矿阶段以富CO2包裹体为主,烟灰色石英阶段见大量CO2、CH4、CO、H2S等气相组成,硫化物阶段流体组成相对简单。成矿流体具有中低温、低盐度、低密度、近中性、相对还原及低氧逸度的特征。区域成矿温度变化没有明显规律,成矿深度存在一定变化趋势,说明成矿过程以局部构造或岩浆岩体控制为主,同时黄铁矿化、烟灰色硅化等围岩蚀变是重要的找矿标志。

(3) 通过流体包裹体岩相学特征、气相组成,成矿流体物理化学特征,结合已有的稳定同位素研究成果,说明初始成矿流体应以深源为主。流体包裹体组合变化表明成矿作用发生在流体CO2含量不断降低的过程,烟灰色石英阶段流体混合和构造制约引起流体沸腾作用强烈,导致CO2等气体大量逃逸,流体温度和盐度降低伴随物理化学性质变化,引起大量矿石矿物的快速沉淀成矿。

参考文献/References
CHEN B J, WEN C Q, HUO Y, et al., 2010. Study on fluid inclusion of the Shuiyindong gold deposit, Southwestern Guizhou[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 29(1): 45-51. (in Chinese with English abstract)
CHEN M H, MAO J W, QU W J, et al., 2007. Re-Os dating of arsenian pyrites from the Lannigou gold deposit, Zhenfeng, Guizhou Province, and its geological significances[J]. Geological Review, 53(3): 371-382. (in Chinese with English abstract)
DU F, 2017. Characteristics and significance of fluid inclusions from breccia ore of Getang gold deposit in Anlong, Guizhou Province[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
FAN H R, XIE Y H, WANG Y L, 1997. Fluid inclusion evidences in the processes and environments of gold deposition[J]. Journal of Precious Metallic Geology, 6(3): 204-213. (in Chinese with English abstract)
FAN H R, HU F F, YANG J H, et al., 2005. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong Province[J]. Acta Petrologica Sinica, 21(5): 1317-1328. (in Chinese with English abstract)
GUO J H, 2002. Mineralizing process of micrograin-type gold deposits in Southeastern Yunnan and Northwestern Guangxi[J]. Mineral Deposits, 21(S1): 121-124. (in Chinese with English abstract)
HAN X, 2012. The study on geologic-geochemical characteristics and causes discusses of the Lannigou Carlin-type gold deposits in Guizhou[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
HE J P, YUAN S F, WANG X Y, et al., 2018. Geochemical Characteristics of the Lianhuashan anticline in the Southwest Guizhou dense area of mineral deposits[J]. Acta Geologica Sichuan, 38(3): 384-387, 397. (in Chinese with English abstract)
HU C W, MOU Y Z, 2015. Analysis of Geological features ofmineralization and prospecting potential of the Jiadi gold deposit in Panxian, Guizhou Province[J]. Nonferrous Metals Abstract, 30(3): 42-44. (in Chinese with English abstract)
HU R Z, SU W C, BI X W, et al., 1995. A possible evolution way of ore-Formting hydrothermal fluid for the Carlin-type gold deposits in the Yunnan-Guizhou-Guangxi triangle area[J]. Acta Mineralogica Sinica, 15(2): 144-149. (in Chinese with English abstract)
HU Y Z, LIU W H, WANG J J, et al., 2017. Basin-scale structure control of Carlin-style gold deposits in central Southwestern Guizhou, China: insights from seismic reflection profiles and gravity data[J]. Ore Geology Reviews, 91: 444-462. DOI:10.1016/j.oregeorev.2017.09.011
HUA R M, CHEN P R, ZHANG W L, et al., 2005. Three major metallogenic events in Mesozoic in South China[J]. Mineral Deposits, 24(2): 99-107. (in Chinese with English abstract)
HUANG X Q, CHEN Z L, WANG P A, et al., 2008. Fluid inclusion study of the Shazhou uranium orefield in the Xiangshan deposiţJiangxi[J]. Journal of Geomechanics, 14(2): 176-185. (in Chinese with English abstract)
LARGE S J E, BAKKER E Y N, WEIS P, et al., 2016. Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend[J]. Geology, 44(12): 1015-1018. DOI:10.1130/G38351.1
LEHRMANN D J, PAYNE J L, PEI D H, et al., 2007. Record of the end-Permian extinction and Triassic biotic recovery in the Chongzuo-Pingguo platform, southern Nanpanjiang basin, Guangxi, south China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 200-217. DOI:10.1016/j.palaeo.2006.11.044
LI J H, 2021. The study of ore-forming processes of the Jiadi and Damaidi basalt-hosted gold deposits, Southwestern Guizhou Province, China[D]. Guiyang: Guizhou University. (in Chinese with English abstract)
LIU B, DUAN G X, 1987. The density and isochoric formulae for NaCl-H2O fluid inclusions (salinity≤25 WT%) and their applications[J]. Acta Mineralogica Sinica, 7(4): 345-352. (in Chinese with English abstract)
LIU B, 2011. Calculation of pH and Eh for aqueous inclusions as simple system[J]. Acta Petrologica Sinica, 27(5): 1533-1542. (in Chinese with English abstract)
LIU J M, LIU J J, 1997. Basin fluid genetic model of sediment-hosted microdisseminated gold deposits in the gold-triangle area between Guizhou, Guangxi and Yunnan[J]. Acta Mineralogica Sinica, 17(4): 448-456. (in Chinese with English abstract)
LIU J Z, DENG Y M, LIU C Q, et al., 2006. Metallogenic conditions and model of the superlarge Shuiyindong stratabound gold deposit in Zhenfeng County, Guizhou Province[J]. Geology in China, 33(1): 169-177. (in Chinese with English abstract)
LIU J Z, XIA Y, DENG Y M, et al., 2009. Researches on the Sbt of Shuiyindong gold deposit and significance for regional prospecting[J]. Gold Science and Technology, 17(3): 1-5. (in Chinese with English abstract)
LIU X F, NI S Z, SU W C, 1996. Characteristics of isotope geochemistry and plutonic-origin fluid mineralization for Carlin-type gold deposits in the Yunnan-Guizhou-Guangxi[J]. Journal of Mineralogy and Petrology, 16(4): 106-111. (in Chinese with English abstract)
LIU Y H, 2002. Analysis on the Minerogenetic Geological Condition of the Gold Ore in the Lianhuashan Anticline Western Guizhou[J]. Guizhou Geology, 19(4): 231-234. (in Chinese with English abstract)
LU H Z, 2008. Role of CO2 fluid in the formation of gold deposits: Fluid inclusion evidences[J]. Geochimica, 37(4): 321-328. (in Chinese with English abstract)
LU H Z, 2019. Geofluids and across earth sphere structures[J]. Journal of Geomechanics, 25(6): 1003-1012. (in Chinese with English abstract)
MAO J W, LI Y Q, 2001. Fluid inclusions of the Dongping gold telluride deposit in Hebei Province, China: involvement of mantle fluid in metallogenesis[J]. Mineral Deposits, 20(1): 23-36. (in Chinese with English abstract)
NIE G J, YU H M, HE S, et al., 2020. Physical simulation analysis of the Cenozoic fault activities and structural deformation mechanism of the Youjiang area[J]. Journal of Geomechanics, 26(3): 316-328. (in Chinese with English abstract)
NIE L Q, ZHOU T F, WANG F Y, et al., 2019. Study of fluid inclusions and H-O-S isotopic compositions of Donggushan tungsten skarn deposit, Anhui Province, China[J]. Acta Petrologica Sinica, 35(12): 3825-3837. (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.12.16
PENG Y W, GU X X, ZHANG Y M, et al., 2014. Source and evolution of ore-forming fluid of the Huijiabao gold field, Southwestern Guizhou: evidences from fluid inclusions and stable isotopes[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5): 666-680. (in Chinese with English abstract)
QIU L F, WU D, WU Y, et al., 2019. Characteristics of ore-forming fluids and sources of polymetallic ore-forming materials in deep segment of uranium deposits in Niutoushan area, Xiangshan[J]. Mineral Deposits, 38(2): 291-302. (in Chinese with English abstract)
SU W C, XIA B, ZHANG H T, et al., 2008. Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for the environment and processes of ore formation[J]. Ore Geology Reviews, 33(3-4): 667-679. DOI:10.1016/j.oregeorev.2007.10.002
SU W C, ZHANG H T, HU R Z, et al., 2012. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for gold depositional processes[J]. Mineralium Deposita, 47(6): 653-662. DOI:10.1007/s00126-011-0328-9
TIAN C, ZHANG W G, HE H J, et al., 2021. Mineralogical characteristics of gold-bearing pyrite and gold occurrence regularity of the Jiadi gold deposit in southwestern Guizhou Province[J]. Geology in China, 48(4): 1255-1266. (in Chinese with English abstract)
WANG D F, LIU J Z, XIONG C J, et al., 2014. A Preliminary Study on Ore Characteristics of the Jiadi Gold Deposit in Panxian, Guizhou[J]. Journal of Guizhou University (Natural Sciences), 31(6): 55-60. (in Chinese with English abstract)
WANG D F, 2015. A preliminary study on the geological and geochemical characteristics of the Jiadi gold deposit in Panxian, Guizhou[D]. Guiyang: Guizhou University. (in Chinese with English abstract)
WU F Y, GE W C, SUN D Y, et al., 2003. Discussions on the lithospheric thinning in eastern China[J]. Earth Science Frontiers, 10(3): 51-60. (in Chinese with English abstract)
WU X H, CHENG P L, XIAO C G, et al., 2013. Metallogenic geologic characteristics of Damaidi gold deposit in basalt distribution area of Western Guizhou[J]. Guizhou Geology, 30(4): 283-288. (in Chinese with English abstract)
XIA Y, 2005. Characteristics and model for Shuiyindong gold deposit in Southwestern Guizhou, China[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese with English abstract)
YAN D P, ZHOU M F, SONG H L, et al., 2002, Where was south China locatedin the reconstruction of Rodinia?[D]. Eart h Science Frontiers, 9(4): 249-256. (in Chinese with English abstract)
YAO J, 2018. Studies on ore-forming material source and ore genesis of Laozhaiwan fine-disseminated gold deposit, in Yunnan[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
ZENG G P, 2018. Study on the structurally controlling on the micro-disseminated gold deposits in the western of the Southwest Guizhou gold ore concentration area[D]. Wuhan: China University of Geosciences (Wuhan). (in Chinese with English abstract)
ZENG S G, WANG S H, WU X H, 2014. Metallogenic Mode Disscussion of Microscopic Disseminated Type Gold Deposit in Lianhuashan Area[J]. Guizhou Geology, 31(3): 161-169. (in Chinese with English abstract)
ZHANG L, DU D Q, ZHANG H B, et al., 2012. Study on structural ore control of Huijiapu gold mine field in Southwestern Guizhou: tectonic significance of the "Two-stairs" model[J]. Gold, 33(9): 13-18. (in Chinese with English abstract)
ZHANG R Q, ZHOU Y, WANG X W, et al., 2009. Structural features and tectonic evolution of the Wei-Zi-Luo fault zone in Southwestern Guizhou Province[J]. Journal of Geomechanics, 15(2): 178-189. (in Chinese with English abstract)
ZHANG T, CHEN Z L, HUANG H Y, et al., 2020. Geochemical characteristics of gold-bearing minerals and its geological significance in the Ashawayi gold deposit in the southwestern Tianshan Orogen[J]. Journal of Geomechanics, 26(3): 443-458. (in Chinese with English abstract)
ZHAO F Y, XIAO C G, ZHANG B Q, et al., 2018. REE and isotopic features of the Jiadi gold deposit in Panxian county, Guizhou Province and its ore-forming material source[J]. Geology and Exploration, 54(3): 465-478. (in Chinese with English abstract)
ZHENG L L, 2017. Mineralization mechanism and ore-forming process of the Nibao gold deposit in Southwestern Guizhou, China[D]. Guiyang: Guizhou University. (in Chinese with English abstract)
ZHU L M, JIN J F, HE M Y, et al., 1997. An initial study of the mineralization of plutonic fluid of the fine disseminated gold deposit in Southwest Guizhou Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 16(3): 173-177. (in Chinese with English abstract)
ZHUO Y Z, HU R Z, XIAO J F, et al., 2019. Trace elements and C-O isotopes of calcite from Carlin-type gold deposits in the Youjiang Basin, SW China: constraints on ore-forming fluid compositions and sources[J]. Ore Geology Reviews, 113: 103067. DOI:10.1016/j.oregeorev.2019.103067
陈本金, 温春齐, 霍艳, 等, 2010. 黔西南水银洞金矿床流体包裹体研究[J]. 矿物岩石地球化学通报, 29(1): 45-51. DOI:10.3969/j.issn.1007-2802.2010.01.007
陈懋弘, 毛景文, 屈文俊, 等, 2007. 贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义[J]. 地质论评, 53(3): 371-382. DOI:10.3321/j.issn:0371-5736.2007.03.010
杜放, 2017. 贵州安龙戈塘金矿角砾状矿石流体包裹体特征研究及意义[D]. 成都: 成都理工大学.
范宏瑞, 谢奕汉, 王英兰, 1997. 流体包裹体与金矿床的成矿及勘探评价[J]. 贵金属地质, 6(3): 204-213.
范宏瑞, 胡芳芳, 杨进辉, 等, 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J]. 岩石学报, 21(5): 1317-1328.
国家辉, 2002. 滇东南桂西北微细粒型金矿成矿作用探讨[J]. 矿床地质, 21(S1): 121-124.
韩雪, 2012. 贵州烂泥沟卡林型金矿床地质地球化学特征及成因探讨[D]. 成都: 成都理工大学.
何金坪, 苑顺发, 汪小勇, 等, 2018. 黔西南矿集区莲花山背斜区地球化学特征[J]. 四川地质学报, 38(3): 384-387, 397. DOI:10.3969/j.issn.1006-0995.2018.03.007
胡瑞忠, 苏文超, 毕献武, 等, 1995. 滇黔桂三角区微细浸染型金矿床成矿热液一种可能的演化途径: 年代学证据[J]. 矿物学报, 15(2): 144-149. DOI:10.3321/j.issn:1000-4734.1995.02.005
胡承伟, 牟永忠, 2015. 贵州省盘县架底金矿床成矿地质特征及找矿潜力分析[J]. 有色金属文摘, 30(3): 42-44.
华仁民, 陈培荣, 张文兰, 等, 2005. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质, 24(2): 99-107. DOI:10.3969/j.issn.0258-7106.2005.02.002
黄锡强, 陈正乐, 王平安, 等, 2008. 江西相山铀矿田沙洲矿床流体包裹体研究[J]. 地质力学学报, 14(2): 176-185. DOI:10.3969/j.issn.1006-6616.2008.02.009
李俊海, 2021. 贵州西南部架底和大麦地玄武岩中金矿床成矿过程研究[D]. 贵阳: 贵州大学.
刘斌, 段光贤, 1987. NaCl—H2O溶液包裹体的密度式和等容式及其应用[J]. 矿物学报, 7(4): 345-352. DOI:10.3321/j.issn:1000-4734.1987.04.010
刘斌, 2011. 简单体系水溶液包裹体pH和Eh的计算[J]. 岩石学报, 27(5): 1533-1542.
刘建明, 刘家军, 1997. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J]. 矿物学报, 17(4): 448-456. DOI:10.3321/j.issn:1000-4734.1997.04.012
刘建中, 邓一明, 刘川勤, 等, 2006. 贵州省贞丰县水银洞层控特大型金矿成矿条件与成矿模式[J]. 中国地质, 33(1): 169-177. DOI:10.3969/j.issn.1000-3657.2006.01.019
刘建中, 夏勇, 邓一明, 等, 2009. 贵州水银洞Sbt研究及区域找矿意义探讨[J]. 黄金科学技术, 17(3): 1-5. DOI:10.3969/j.issn.1005-2518.2009.03.001
刘显凡, 倪师军, 苏文超, 1996. 滇黔桂微细浸染型金矿同位素地球化学特征与深源流体成矿[J]. 矿物岩石, 16(4): 106-111.
刘远辉, 2002. 贵州莲花山背斜金的成矿地质条件分析[J]. 贵州地质, 19(4): 231-234. DOI:10.3969/j.issn.1000-5943.2002.04.004
卢焕章, 2008. CO2流体与金矿化: 流体包裹体的证据[J]. 地球化学, 37(4): 321-328. DOI:10.3321/j.issn:0379-1726.2008.04.006
卢焕章, 2019. 地球中的流体和穿越层圈构造[J]. 地质力学学报, 25(6): 1003-1012.
毛景文, 李荫清, 2001. 河北省东坪碲化物金矿床流体包裹体研究: 地幔流体与成矿关系[J]. 矿床地质, 20(1): 23-36. DOI:10.3969/j.issn.0258-7106.2001.01.004
聂冠军, 于红梅, 何声, 等, 2020. 右江地区新生代断裂活动及构造变形机制的物理模拟分析[J]. 地质力学学报, 26(3): 316-328.
聂利青, 周涛发, 汪方跃, 等, 2019. 安徽庐枞矿集区东顾山钨矿床成矿流体来源与演化: 来自H、O、S同位素和流体包裹体的证据[J]. 岩石学报, 35(12): 3825-3837. DOI:10.18654/1000-0569/2019.12.16
彭义伟, 顾雪祥, 章永梅, 等, 2014. 黔西南灰家堡金矿田成矿流体来源及演化: 流体包裹体和稳定同位素证据[J]. 矿物岩石地球化学通报, 33(5): 666-680. DOI:10.3969/j.issn.1007-2802.2014.05.013
邱林飞, 吴迪, 吴玉, 等, 2019. 相山牛头山地区铀矿床深部多金属成矿流体特征与成矿物质来源探讨[J]. 矿床地质, 38(2): 291-302.
田冲, 张文高, 何虎军, 等, 2021. 黔西南架底金矿床载金黄铁矿的矿物学特征及金的赋存规律研究[J]. 中国地质, 48(4): 1255-1266.
王大福, 刘建中, 熊灿娟, 等, 2014. 贵州盘县架底金矿矿石特征初步研究[J]. 贵州大学学报(自然科学版), 31(6): 55-60. DOI:10.3969/j.issn.1000-5269.2014.06.014
王大福, 2015. 贵州盘县架底金矿地质地球化学特征初步研究[D]. 贵阳: 贵州大学.
吴福元, 葛文春, 孙德有, 等, 2003. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘, 10(3): 51-60. DOI:10.3321/j.issn:1005-2321.2003.03.004
吴小红, 程鹏林, 肖成刚, 等, 2013. 贵州西部玄武岩分布区大麦地金矿成矿地质特征[J]. 贵州地质, 30(4): 283-288. DOI:10.3969/j.issn.1000-5943.2013.04.008
夏勇, 2005. 贵州贞丰县水银洞金矿床成矿特征和金的超常富集机制研究[D]. 贵阳: 中国科学院研究生院(地球化学研究所).
颜丹平, 周美夫, 宋鸿林, 等, 2002. 华南在Rodinia古陆中位置的讨论: 扬子地块西缘变质-岩浆杂岩证据及其与Seychelles地块的对比[J]. 地学前缘, 9(4): 249-256. DOI:10.3321/j.issn:1005-2321.2002.04.004
姚娟, 2008. 云南老寨湾金矿床成矿物质来源分析及矿床成因探讨[D]. 成都: 成都理工大学.
曾国平, 2018. 黔西南矿集区西段微细浸染型金矿构造控矿作用研究[D]. 武汉: 中国地质大学(武汉).
张蕾, 杜定全, 张晗彬, 等, 2012. 黔西南灰家堡金矿田的构造控矿模式研究: "两层楼"模式的构造意义[J]. 黄金, 33(9): 13-18.
张荣强, 周雁, 汪新伟, 等, 2009. 贵州西南部威-紫-罗断裂带构造特征及演化[J]. 地质力学学报, 15(2): 178-189. DOI:10.3969/j.issn.1006-6616.2009.02.007
曾昭光, 王石华, 吴小红, 2014. 莲花山地区微细粒浸染型金矿成矿模式探讨: 以架底金矿为例[J]. 贵州地质, 31(3): 161-169. DOI:10.3969/j.issn.1000-5943.2014.03.001
张涛, 陈正乐, 黄宏业, 等, 2020. 西南天山阿沙哇义金矿载金矿物地球化学特征及地质意义[J]. 地质力学学报, 26(3): 443-458.
赵富远, 肖成刚, 张兵强, 等, 2018. 贵州盘县架底金矿稀土元素和同位素特征及成矿物质来源探讨[J]. 地质与勘探, 54(3): 465-478. DOI:10.3969/j.issn.0495-5331.2018.03.003
郑禄林, 2017. 贵州西南部泥堡金矿床成矿作用与成矿过程[D]. 贵阳: 贵州大学.
朱赖民, 金景福, 何明友, 等, 1997. 初论黔西南微细浸染型金矿床深源流体成矿[J]. 矿物岩石地球化学通报, 16(3): 173-177.