地质力学学报  2022, Vol. 28 Issue (2): 226-236
引用本文
李华勇, 赵楠, 杨艺萍, 于正松, 孙启发, 吴帅虎, 张曼, 张虎才. 山东丹河2018年洪水沉积特征、物源分析及水文过程重建[J]. 地质力学学报, 2022, 28(2): 226-236.
LI Huayong, ZHAO Nan, YANG Yiping, YU Zhengsong, SUN Qifa, WU Shuaihu, ZHANG Man, ZHANG Hucai. Sedimentary characterization and provenance analysis of the 2018 flooding along the Dan River, Shandong, and the hydrodynamic process reconstruction[J]. Journal of Geomechanics, 2022, 28(2): 226-236.
山东丹河2018年洪水沉积特征、物源分析及水文过程重建
李华勇1, 赵楠1, 杨艺萍2,3, 于正松1, 孙启发4,5, 吴帅虎1, 张曼1, 张虎才6,7    
1. 安阳师范学院资源环境与旅游学院,河南 安阳 455000;
2. 中国科学院南海海洋研究所,广东 广州 510301;
3. 中国科学院边缘海与大洋地质重点实验室,广东 广州 510301;
4. 云南师范大学地理学部,云南 昆明 650500;
5. 云南省高原地理过程与环境变化重点实验室,云南 昆明 650500;
6. 云南大学生态与环境学院,云南 昆明 650504;
7. 云南大学高原湖泊生态与治理研究院,云南 昆明 650504
摘要:通过研究现代洪水沉积特征,可重建洪水水文过程,识别泥沙侵蚀源区,既可为防洪水利工程设计提供依据,也可为古洪水层判识建立参考。2018年8月中旬,山东省北部弥河、丹河流域受双台风影响发生洪涝灾害。通过对洪水淹没区进行考察,在下游洪水沉积物保存完好的地点获取21.0 cm长岩芯DH1,并进行粒度、烧失量、磁化率和孢粉分析,结果显示:钻孔岩芯11.5~21.0 cm段为现代土壤层,上部为洪水堆积物,其中0~9.0 cm段是典型洪水粉砂层,粒度较粗,以中—粗粉砂为主,平均砂含量达到14.7%;9.0~11.5 cm段为洪水前期细粒沉积层。根据粒度敏感组分含量变化特征,可将此次洪水过程划分为两个阶段:洪水前期,水动力较弱,在自然条件和人为活动两方面因素共同作用下,滞流现象严重,沉积黏土层;洪水后期,流速显著加快,出现典型洪水粉砂沉积。碳酸盐、有机质含量及孢粉丰度均与粒度负相关,表明弱水动力环境有利于其沉降并富集。土壤表层孢粉组合可较好指示研究区植被分布情况,洪水粉砂层孢粉组合则更能反映流域内植被的整体状况,揭示河流洪水搬运孢粉的能力大于风力;洪水黏土层孢粉组合与研究区内植被分布状况的吻合度较高,明显有别于洪水粉砂层孢粉组合特征,推测洪水前期水位上涨的主因是降水和本地地表径流汇入,因此泥沙和孢粉主要来自研究区内,后期上游客水涌入,带来更多山地植被孢粉信息。研究表明DH1钻孔孢粉组合特征对于传播过程和水动力大小具有良好响应,同时具备识别泥沙侵蚀源区的潜力。磁化率值主要反映成壤强度的大小,在洪水黏土层和粉砂层均表现为稳定的低值,且显著低于接触土壤层,因此可作为判识(古)洪水沉积的有效指标,但其区域普适性有待进一步探讨。
关键词山东丹河    洪水沉积    水文过程    物源分析    粒度特征    孢粉    磁化率    
DOI10.12090/j.issn.1006-6616.2021112     文章编号:1006-6616(2022)02-0226-11
Sedimentary characterization and provenance analysis of the 2018 flooding along the Dan River, Shandong, and the hydrodynamic process reconstruction
LI Huayong1, ZHAO Nan1, YANG Yiping2,3, YU Zhengsong1, SUN Qifa4,5, WU Shuaihu1, ZHANG Man1, ZHANG Hucai6,7    
1. School of Resources Environment and Tourism, Anyang Normal University, Anyang 455000, Henan, China;
2. South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China;
3. Key Laboratory of Ocean and Marginal Sea Geology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China;
4. Faculty of Geography, Yunnan Normal University, Kunming 650500, Yunnan, China;
5. Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Changes, Kunming 650500, Yunnan, China;
6. School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China;
7. Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650504, Yunnan, China
Abstract: Sedimentary characterization of modern floods helps to reconstruct the hydrologic flood process and spot the source area of sediment erosion. It is of great referential value both to the design of flood-control works and the identification of paleo-flood layers. In mid-August 2018, two typhoons battered the Dan River Basin in northern Shandong, leading to flooding disasters. Based on the research of the flooded area, the boreholeDH1 of 21 cm long was obtained from the downstream with well-preserved flood sediments. The analyses on its grain size, loss on ignition, magnetic susceptibility, and sporo-pollen features, show that the sedimentary cycle under flooding is characterized by fine grains in the lower part and coarse grains in the upper part. Modern soil is developed at a depth of 11.5~21.0 cm; a typical flood silt layer is developed at a depth of 0~9.0 cm, which is relatively coarse in grain size, dominated by medium-to-coarse-grained silt, and with a sand content of 14.7% on average; and a fine-grained sedimentary layer is developed at a depth of 9.0~11.5 cm during the initial period of flooding. According to the various traits of sensitive component contents, the flooding process can be divided into two stages: the relatively weak hydrodynamic force at the earlier stage and the significantly accelerated flow velocity at the later stage; The former is characterized by severe vicious flow and deposition of clays under the combined action of natural conditions and human activities, which can be further divided into two sub-sections of the rising water level and the significant acceleration of flow velocity; The latter result in typical silty deposits from flooding. Carbonate, organic matter content, and sporo-pollen abundance all are negatively correlated with grain size, indicating that the weak hydrodynamic environment is conducive to its deposition and accumulation. The sporo-pollen assemblage of the surface soil can better indicate the distribution of vegetation in the study area, and the sporo-pollen assemblage of the silty layer from flooding can better reflect the overall condition of vegetation in the basin, which has revealed that the river flood is much greater than wind in transporting sporo-pollen. In addition, the sporo-pollen assemblage features in the clayey layer from flooding are in good agreement with the distribution of vegetation in the study area, and obviously different from those of the silty layer from flooding, according to which it is speculated that the primary cause of the water level rise during the initial period of flooding lies in precipitation incorporating with local surface runoff; therefore, the sediment and sporo-pollen are derived from within the study area, and meanwhile the influx of tourists in the later period has brought in more sporo-pollen from mountainous vegetation. The sporo-pollen deposition records from borehole DH1 show that the sporo-pollen assemblage features are in good response to the propagation process and hydrodynamic force, and have the potential to identify the source area of sediment erosion. The magnetic susceptibility mainly reflects the intensity of pedogenesis, and its value for both the clayey and silty layers from flooding is steadily low, significantly lower than that for the soil contact layer. Therefore, it can be used as a reliable indicator for identifying flood deposits, but the geospatial scope of their use needs to be further discussed.
Key words: Dan River    flood deposit    hydrodynamic process    provenance analysis    grain size features    sporo-pollen    magnetic susceptibility    

当今洪水灾害频发的环境背景下,利用地质载体延长古洪水记录的时空尺度,研究其发生规律,探讨古洪水发生的气候背景及自然和人文因素,逐渐成为学术热点,并且极具现实意义(Knox,2000张业成等,2006高杨等,2017)。古洪水沉积物是记录古洪水信息的重要地质载体之一,通过对其研究,既可以理解河流水文系统在万年尺度对于气候变化的响应规律,又可以揭示古洪水水位、流量及其发生机制,同时为现代水利和防洪工程设计提供依据(Brown et al., 2000De Niel et al., 2017)。但因缺乏现代洪水沉积物研究作为识别依据和参考,学术界对古洪水层的判别主要依据经验法,精准识别较为困难(吴庆龙等,2009Dong et al., 2018)。因此,遵循“将今论古”的研究思路,充分认识现代洪水沉积特征,是识别古洪水沉积层的重要前提和依据(Zhan et al., 2010St George et al., 2020)。然而,目前现代洪水沉积学研究较为薄弱,表现在一是成果产出较少,且研究区集中于河流中、上游地区(Micallef et al., 2018Carling et al., 2020);二是对一次完整洪水沉积过程的系统研究不足,尤其缺乏现代洪水层与下伏地层的对比。文章选取山东省北部丹河2018年洪水事件作为研究案例点,钻取新鲜洪水沉积层及下伏土壤层岩芯(钻孔编号DH1),进行粒度、烧失量、磁化率及孢粉分析,探究小流域下游洪水沉积特征,揭示水动力变化过程,分析泥沙侵蚀源区,研究结果既可为古洪水沉积层识别提供有力参考,又可为水利和防洪工程建设提供科学依据。

1 研究区概况与洪水发生过程

丹河位于山东省北部,发源于临朐县山旺镇,北偏东流向汇入弥河,最终注入渤海莱州湾(图 1a1b)。河流上游流经鲁中山地,林地面积相对较大;下游流经山前平原及滨海低地区,流域内以旱作粮食作物和蔬菜种植为主。流域年平均降水量约为600 mm,降水集中在5—8月,旱涝灾害频发(徐立荣,2001黄振国等,2013)。

2018年8月中旬,台风“摩羯”和“温比亚”接连影响该区域,带来强降水,河流水位迅速升高,弥河、丹河下游发生多处漫堤和决堤险情,形成洪涝灾害(徐立荣,2001郭广军和贺芳丁,2018)。

2 样品采集与实验方法 2.1 样品采集

2018年10月,笔者考察丹河洪水淹没区,并选择下游新鲜洪水沉积物保存较为原始的地点(图 1b),获取沉积物短钻DH1岩芯(36°51′8″N,118°55′58″E;长21.0 cm),钻孔位于堤坝内侧河漫滩之上(图 1c),岩芯0~9.0 cm段为黄色粉砂层,粒度较粗,岩性松散;9.0~11.5 cm段为棕色黏土层,质地紧密;11.5~21.0 cm段发育红棕色现代土壤,颗粒较细(图 1d)。

a—研究区位置图;b—丹河下游流域图;c—采样点位置图;d—钻孔岩芯图 (a) The location of the research area; (b) Downstream of the Dan River; (c) Sampling site; (d) The lithology of the core DH1 图 1 丹河下游流域及钻孔位置 Fig. 1 Location of the downstream of Dan River and the drilling point

样品运回实验室后剖开,以0.5 cm间隔分样,获得42个样品,全部进行粒度、磁化率、碳酸盐及有机质含量分析,少数层位样品量不足以完成磁化率实验时,将相邻样品合并进行测试,并选取4个样品(2.0~2.5 cm、6.0~6.5 cm、10.0~10.5 cm、15.0~15.5 cm)进行孢粉分析。

2.2 实验方法

粒度测试所用仪器为Mastersizer 2000型激光粒度仪,检测范围0.02~2000 μm,样品预处理后上机测试,系统自动测量2次并取平均值(李华勇等,2020);有机质和碳酸盐含量采用烧失量法测定(张文河和穆桂金,2007胡彩莉等,2016);磁化率采用英国Bartington仪器公司生产的MS2型磁化率仪,重复测量3次取平均值(王喜生等,2006),以上实验均在云南师范大学高原湖泊生态与全球变化重点实验室完成。

孢粉提取采用HF法,鉴定和统计在Nikon光学显微镜(10×100倍)下进行,每个样品鉴定和统计不少于300粒花粉,孢粉百分比含量按孢子和花粉总数计算(李春海和何翠玲,2004),实验在中国科学院南海海洋研究所边缘海与大洋地质重点实验室完成。

3 实验结果 3.1 粒度组分特征

DH1钻孔岩芯粒度组分以粉砂为主,平均含量达到82.7%,黏土和砂平均含量分别为8.3%、9.0%;中值粒径介于9.2~31.9 μm之间。岩芯宏观特征和各粒级含量变化规律显示,DH1钻孔岩芯沉积物可分为三段:下段(11.5~21.0 cm)粒度较细且变化不大,平均中值粒径仅为13.8 μm;0~9.0 cm为砂质粉砂层,平均砂含量在整个钻孔最高,达到14.7%;中间为过渡层(9.0~11.5 cm),砂含量逐渐升高,黏土和粉砂含量波动降低(图 2a)。

a—DH1钻孔岩芯粒度参数变化特征;b—DH1钻孔岩芯烧失量变化特征;c—DH1钻孔岩芯低频质量磁化率变化曲线 (a) Variation of grain size data; (b) Variation of loss on ignition; (c) Variation of magnetic susceptibility 图 2 DH1钻孔岩芯粒度组分、烧失量及磁化率变化曲线 Fig. 2 Variation curves of grain size components, loss on ignition and magnetic susceptibility in the core DH1
3.2 烧失量特征

岩芯有机质含量波动范围为3.7%~9.6%,平均含量为5.5%,其中土壤层(11.5~21.0 cm)有机质含量较为稳定,平均值为5.4%,洪水层(0~11.5 cm)有机质含量总体呈减少特征,平均含量为5.6%,峰值出现在11.0 cm处(洪水沉积初期),含量接近10%(图 2b)。

碳酸盐含量介于2.0%~4.6%之间,平均值3.0%,变化特征与有机质含量曲线较为一致,于11.5 cm处出现峰值,含量达到4.6%,其他层位含量均较低,尤其是上段洪水粉砂层(0~9.0 cm),含量低且较为稳定(图 2b)。

3.3 磁化率特征

低频质量磁化率χlf变化范围为5.08×10-8~42.22×10-8 m3/kg,平均值为18.05×10-8 m3/kg,表现为显著的两段式变化,洪水层磁化率平均值为5.78×10-8 m3/kg,显著低于土壤层(平均值27.73×10-8 m3/kg),且在沉积界面处(11.5~12.0 cm)呈突变式减小(图 2c)。

3.4 孢粉特征

DH1钻孔岩芯共鉴定出40个科属的孢粉。孢粉组合中以草本花粉为主,共19个属种,占总含量的71.41%,主要以藜科(Chenopodiaceae,22.93%)、禾本科(Gramineae,14.37%)、香蒲科(Typhaceae,7.87%)、蒿属(Artemisia,4.13%)、罗布麻属(Apocynum,3.80%)、莎草科(Cyperaceae,3.22%)、唐松草属(Thalictrum,3.80%)、眼子菜科(Potamogetonaceae,2.89%)、葎草属(Humulus,2.04%)、十字花科(Cruciferae,1.62%)、蔷薇科(Rosaceae,1.25%)、车前草科(Plantaginaceae,1.08%)等为主;此外还有少许菊科(Compositae,0.5%)和豆科(Leguminosae,0.1%)等。其次是木本花粉,共16个科属,占总含量的24.45%,主要有胡桃属(Juglans,5.59%)、松属(Pinus,5.56%)、榆属(Ulmus,4.03%)、桦木属(Betula,1.94%)、落叶栎属(Deciduous Quercu,1.68%)等。蕨类孢子含量最少,约为3.06%,其中三缝孢含量是2.40%,而单缝孢只出现在洪水层,含量为1.32%(图 3)。

图 3 DH1钻孔岩芯主要孢粉谱 Fig. 3 Sporo-pollen percentage diagram for main taxa in the core DH1
4 讨论 4.1 洪水层粒度二元结构与水动力特征

粒度特征可直观反映洪水水动力大小(Draut and Rubin, 2013王继龙等,2016刘智荣等,2021)。DH1钻孔岩芯下段11.5~21.0 cm为河漫滩沉积基础上发育的现代土壤层,粒径较细,以黏土和粉砂为主,砂含量很低(图 2a)。0~11.5 cm段为洪水沉积层,岩性宏观特征及粒级含量结果显示,该段又可分为两个亚段:0~9.0 cm是典型洪水粉砂层,粒度较粗;9.0~11.5 cm段为过渡层,粒度由细变粗,指示水动力逐渐增强。自然状态洪水发生后,粗粒物质沉降快,细泥沙沉降慢,单次洪水沉积旋回底部泥沙粗,顶部颗粒较细(Long et al., 2008)。然而,丹河流域人类活动强度大,行洪河道被大量侵占,导致洪水初期水流不畅,以细粒沉积物为主,后期流速加快,粒度变粗,沉积平流粉砂层,使沉积旋回呈现底部泥沙细、顶部泥沙粗的特征(见4.2小节讨论)。

4.2 敏感组分与洪水过程重建

利用粒径-标准偏差法识别出DH1钻孔岩芯粒度具有两个敏感组分:C1(9 μm)和C2(61 μm; 图 4孙有斌等,2003)。C1属于细粉砂组分,通常在弱动力环境下才能稳定沉积(李华勇等,2017);C2组分介于粗粉砂和砂之间,其含量多寡可指示水动力强度的变化(陈桥等,2013)。提取其含量并绘制变化曲线,两者基本呈镜像相关关系,表明受同一沉积动力控制(图 5)。

图 4 DH1钻孔岩芯粒度敏感组分变化特征 Fig. 4 Two sensitive grain size components of the core DH1

图 5 敏感组分、烧失量及磁化率变化特征与洪水阶段划分 Fig. 5 Diagram showing the variance of sensitive component contents, loss on ignition, magnetic susceptibility and the flooding stage

根据岩性及敏感组分变化特征,可将洪水沉积层划分为2个阶段、3个亚段,对应洪水过程的3个时期(图 5)。

(1) 阶段Ⅰ:岩芯11.5~8.0 cm段,洪水前期。C1含量由0.8%迅速降低到0.3%以下,C2含量则由0.024%逐步升高到0.136%,揭示该阶段钻孔位置洪水流速由慢速迅速变快。根据敏感组分含量具体变化特征,又可将洪水前期细分为2个亚段。

①Ⅰ-1段:岩芯11.5~10.0 cm段,洪水初始阶段。相比下伏土壤层,11.5 cm处C1和C2含量分别有所升高和降低,并达到全钻孔岩芯峰值,表明洪水最初期,河流水位上升淹没钻孔位置,但流速并未同步提高,水动力极弱,沉积物以黏土和细粉砂为主(图 2a)。气候干旱化和人地矛盾突出大背景下,人为活动对河流水文系统的改造和影响日益突出(Grill et al., 2019),一方面表现为大量滚水坝的修建以及行洪河道被侵占,阻碍洪水通畅流动。另一方面,中、上游防洪水利设施拦蓄一部分洪水,导致初期洪水强度不大,水位上涨的压力主要来自区域内大气直接降水以及地表径流汇入,因此出现水位升高但流速未同步加快的现象,DH1钻孔岩芯11.5 cm处粒度特征即是该水文现象的沉积学表现。自11.5 cm至10.0 cm,C1含量骤降,C2含量波动升高,但仍处于相对稳定阶段,表明该时期洪水流速加快,导致C1组分无法稳定沉积,但水动力强度尚不足以显著影响C2含量,即洪水流速未达到影响粗粉砂、砂含量的阈值(周慧等,2020)。

②Ⅰ-2段:岩芯10.0~8.0 cm段,流速加快阶段。C1含量持续降低,C2含量快速升高,分别达到钻孔岩芯最小值和最大值,对应洪水初期水动力快速增强阶段。强水流携带大量粗粒组分沉积在钻孔位置,同时由于沉积环境不稳定,细粒组分沉积量大幅减少。

(2) 阶段Ⅱ:岩芯8.0~0 cm段,高水位平流沉积阶段。C2含量稳定在高值区,C1含量则相对较低,表明该阶段洪水流速快且较为稳定,对应洪水高水位平流沉积阶段。敏感组分C1和C2含量分别具有微弱的波动升高和降低趋势,揭示洪水水动力缓慢减弱。钻孔顶部未出现洪水沉积旋回中常见的细粒沉积(Long et al., 2008),指示洪水退水过程迅速。DH1钻孔岩芯取自河流行洪道内(图 1c),洪水可通过河道迅速退去,不易出现长期的弱水动力泛滥状态,因而沉积旋回顶部未出现典型黏土层。另外,丹河下游地区人口密集,工农业产值较大,洪水对人民生命财产安全造成严重威胁,人为对洪水的疏排从另一方面加快了退水过程。

4.3 烧失量对水动力大小的响应

DH1钻孔岩芯有机质、碳酸盐含量在洪水前期沉积层(阶段Ⅰ)为高值,并于10.5~11.5 cm处达到峰值,对应洪水沉积Ⅰ-1段,随后快速降低,后有所回升,与敏感组分C1含量变化特征相似(图 6)。图 6显示洪水沉积层有机质、碳酸盐含量与敏感组分C1含量呈正相关关系,R2值分别达到0.83、0.89。洪水相对湖泊、海洋而言,沉积过程短暂而迅速,有机质和碳酸盐以外源输入为主,内源产量极低。有机碎屑物比重较小,在静水或弱水动力条件下才能有效沉积,粒度越细,其含量越高(李华等,2008杨冰洁等,2015);而输入性碳酸盐矿物主要富集在细粒组分中(何良彪,1991)。因此,水动力强度决定了洪水层碳酸盐和有机质含量,流速越快,粒度越大,烧失量越低;水动力越弱,粒度越细,含量越高(王艳君和金秉福,2017)。

a—DH1钻孔岩芯有机质含量与敏感组分C1含量相关关系散点图;b—DH1钻孔岩芯碳酸盐含量与敏感组分C1含量相关关系散点图 (a) Correlation between TOC contents and sensitive component (C1) contents; (b) Correlation between carbonate contents and sensitive component (C1) contents 图 6 DH1钻孔岩芯烧失量与敏感组分C1含量相关关系散点图 Fig. 6 Scatter diagram showing the correlation between loss on ignition and sensitive component (C1) contents in the core DH1
4.4 孢粉对于水动力及物源的指示意义

自然状态下由于粗、细泥沙在洪水中自由沉降速度存在差异,往往形成顶部粒度细、底部粗的特征,称之为一次洪水沉积旋回(Long et al., 2008)。由于孢粉比重远比泥沙小,因而大部分富集于沉积旋回顶部,通过比较沉积剖面粒度和孢粉丰度变化,可判别洪水水动力大小,并进一步区分洪水沉积旋回(张信宝等,2005)。受自然因素和人为活动影响,现代洪水水文特征呈现复杂性(Bormann et al., 2011),在DH1钻孔岩芯剖面粒度表现为下细上粗。与之相对应,洪水前期细粒沉积层(阶段Ⅰ,11.5~8.0 cm)孢粉丰度达到21769.8粒/克(图 7),远高于洪水粉砂层(3016.3粒/克)和土壤层(4317.3粒/克),一方面因素是该阶段水动力较弱,有助于孢粉沉降并富集;另一方与沉积物粒径小更有利于孢粉存储有关(陈桥等,2013)。因此,高孢粉浓度通常对应洪水沉积旋回末期或水动力较弱的阶段。

图 7 DH1钻孔岩芯孢粉种类与浓度、深度分布图(☆表示孢粉分析取样位置) Fig. 7 Diagram showing the concentration and depth of different sporo-pollen species in the core DH1 (☆ represents the sampling locations)

洪水粉砂层(8.0~0 cm段)的木本花粉平均百分含量(32.31%)比下部土壤层(15.21%)的要高,而其草本花粉平均百分含量(63.72%)则比下部(80.18%)低,说明洪水可将上游山地木本花粉搬运到下游,使花粉百分含量发生变化(于革,2011)。土壤层草本植物花粉含量高达80.18%,与当地以农业为主的植被类型相符,木本植物花粉含量占15.21%,且科属种类未突破洪水粉砂层花粉类型(图 3),反映风力可将区域外或上游山地植被孢粉搬运至下游地区,但贡献相对有限(常婧等,2017)。两者对比不难发现,河流洪水搬运孢粉的能力大于风力,因此下游表土孢粉组合可较好指示研究区植被分布情况,而洪水沉积孢粉组合则更能反映流域内植被的整体状况(李杰等,2019)。

阶段Ⅰ(11.5~8.0 cm段)洪水前期黏土沉积层木本和草本花粉平均百分含量分别为21.99%和78.01%,与土壤层接近(15.21%、80.18%),而与洪水粉砂层差异稍大(图 7),揭示洪水前期细粒沉积物可能主要来自研究区内,而非上游山区。结合洪水发生过程和粒度特征推测,该阶段水位上涨的主因是大气直接降水以及本地地表径流汇入,因此研究区内农田为泥沙主要来源,后期上游客水涌入,带来更多山地地区泥沙和植被孢粉信息。该钻孔孢粉沉积记录显示孢粉组合特征对于传播过程和水动力大小具有良好响应,同时具备识别泥沙侵蚀源区的潜力(张信宝等,2005常婧等,2017)。

4.5 磁化率揭示的沉积相变化

DH1钻孔岩芯洪水层低频质量磁化率远低于下伏土壤层,且不论洪水沉积粒度粗细特征如何,磁化率值始终稳定在低值区(图 5)。表明磁化率大小主要揭示沉积相变化,即成壤作用的强度,而与粒度相关性较弱(徐新文等,2010綦琳等,2020)。第四纪黄土和古洪水层研究中,磁化率低值通常指示成壤强度较小的粉尘堆积或洪水沉积层,而其接触古土壤层或文化层,因成壤过程中产生的细粒磁铁矿就地赋存,磁化率值一般较高(安芷生等,1990王晓勇等,2003)。

文章研究的DH1钻孔岩芯各指标参数中,烧失量、孢粉丰度及组合特征皆与粒度存在显著关联,即粒度越细,对应孢粉丰度和烧失量值越高,因此均不能单独作为洪水层识别的绝对指标。而磁化率值有别于其他指标三段式变化模式,在洪水前期黏土层和典型洪水粉砂层数值非常稳定,且显著低于下伏土壤层(图 5),指示成壤强度和沉积相变化,因此可作为识别河流沉积与土壤层的有效指标,但其地理空间适用性有待进一步探讨。

5 结论

文章基于山东北部丹河流域现代洪水沉积物钻孔岩芯的粒度、烧失量、孢粉及磁化率特征,重建洪水水动力过程,识别泥沙侵蚀源区,建立小流域下游洪水沉积特征,为古洪水层识别提供一定参考。

(1) 粒度敏感组分含量特征揭示,洪水前期水动力较弱,在自然条件和人为活动两方面因素共同作用下,水位上涨但流速并未同步加快,沉积黏土层;后期流速显著加快,出现典型洪水粉砂沉积。

(2) 有机颗粒物比重较轻,在弱水动力环境下才能有效沉积,外源输入性碳酸盐矿物主要集中于细颗粒组分中,因此两者均在洪水黏土层出现高值,与粒度具显著负相关关系。

(3) 孢粉丰度在洪水前期黏土沉积层远高于其他层位,可与烧失量共同指示洪水水动力强弱;下游表层土孢粉组合可较好指示研究区植被分布情况,洪水粉砂层孢粉组合则更能反映流域内植被的整体状况,揭示河流洪水搬运孢粉的能力大于风力;洪水黏土沉积层孢粉组合与研究区内植被的分布状况吻合度较好,明显有别于洪水粉砂层孢粉组合特征,推测洪水前期水位上涨的主因是降水和本地地表径流汇入,因此泥沙和孢粉来自研究区内,后期上游客水涌入,带来更多山地植被孢粉信息。DH1钻孔岩芯孢粉沉积记录显示孢粉组合特征对于传播过程和水动力大小具有良好响应,同时具备识别泥沙侵蚀源区的潜力。

(4) 与其他指标参数受控于洪水水动力特征不同,磁化率值主要反映成壤强度的大小,在洪水层普遍表现为稳定的低值,且显著低于接触土壤层磁化率值,因此可作为判识洪水沉积的有效指标,但其在不同区域的适用性是否一致,有待进一步研究。

参考文献/References
AN Z S, PORTER S, KUKLA G, et al., 1990. Magnetic susceptibility evidence of season winds changes on Loess Plateau during the late 130 kyr[J]. Science Bulletin, 35(7): 529-532. (in Chinese)
BORMANN H, PINTER N, ELFERT S, 2011. Hydrological signatures of flood trends on German rivers: Flood frequencies, flood heights and specific stages[J]. Journal of Hydrology, 404(1-2): 50-66. DOI:10.1016/j.jhydrol.2011.04.019
BROWN S L, BIERMAN P R, LINI A, et al., 2000. 10000 yr record of extreme hydrologic events[J]. Geology, 28(4): 335-338. DOI:10.1130/0091-7613(2000)28<335:YROEHE>2.0.CO;2
CARLING P A, BORHORQUEZ P, FAN X M, 2020. Hydraulic control on the development of megaflood runup deposits[J]. Geomorphology, 361: 107203. DOI:10.1016/j.geomorph.2020.107203
CHANG J, HUI Z C, GENG H P, et al., 2017. Modern pollen transportation process in the middle reach of the Heihe River[J]. Scientia Geographica Sinica, 37(12): 1925-1932. (in Chinese with English abstract)
CHEN Q, LIU D Y, CHEN Y J, et al., 2013. Comparative analysis of grade-standard deviation method and factors analysis method for environmental sensitive factor analysis[J]. Earth and Environment, 41(3): 319-325. (in Chinese with English abstract)
DE NIEL J, DEMARÉE G, WILLEMS P, 2017. Weather typing-based flood frequency analysis verified for exceptional historical events of past 500 years along the Meuse River[J]. Water Resources Research, 53(10): 8459-8474. DOI:10.1002/2017WR020803
DONG G H, ZHANG F Y, LIU F W, et al., 2018. Multiple evidences indicate no relationship between prehistoric disasters in Lajia site and outburst flood in upper Yellow River valley, China[J]. Science China Earth Sciences, 61(4): 441-449. DOI:10.1007/s11430-017-9079-3
DRAUT A E, RUBIN D M, 2013. Assessing grain-size correspondence between flow and deposits of controlled floods in the Colorado River, U.S.A[J]. Journal of Sedimentary Research, 83(11): 962-973. DOI:10.2110/jsr.2013.79
GAO Y, LI B, FENG Z, et al., 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1): 65-77. (in Chinese with English abstract)
GRILL G, LEHNER B, THIEME M, et al., 2019. Mapping the world's free-flowing rivers[J]. Nature, 569(7755): 215-221. DOI:10.1038/s41586-019-1111-9
GUO G J, HE F D, 2018. Reflections on reservoirs reinforcement under the impact of typhoon[J]. China Water Resources, (20): 66-69. (in Chinese with English abstract)
HE L B, 1991. Study of carbonate in the fine grained sediment from the coastal zone of the Huanghe Delta and adjacent Bohai gulf[J]. Marine Science, (3): 41-45. (in Chinese with English abstract)
HU C L, MA Y Z, GUO C, et al., 2016. Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method[J]. Earth and Environment, 44(1): 110-118. (in Chinese with English abstract)
HUANG Z G, CHEN Z X, LIU F Q, et al., 2013. Monitoring of greenhouse vegetables land using HJ-1 remotely-sensed imagery[J]. Chinese Journal of Agricultural Resources and Regional Planning, 34(5): 102-106. (in Chinese with English abstract)
KNOX J C, 2000. Sensitivity of modern and Holocene floods to climate change[J]. Quaternary Science Reviews, 19(1-5): 439-457. DOI:10.1016/S0277-3791(99)00074-8
LI C H, HE C L, 2004. Preparation technique of HF treatment for extracting pollen and spores from loess sediments[J]. Acta Micropalaeontologica Sinica, 21(3): 346-348. (in Chinese with English abstract)
LI H Y, TANG Q Y, ZHANG H C, et al., 2020. Quantitative sampling for grain size analysis by MS2000 laser analyzer[J]. Marine Geology and Quaternary Geology, 40(2): 200-207. (in Chinese with English abstract)
LI H Y, ZHANG H C, CHEN G J, et al., 2017. The grain size distribution characteristics of surface sediments from plateau lakes in Yunnan province and their environmental significances[J]. Acta Sedimentologica Sinica, 35(3): 499-507. (in Chinese with English abstract)
LI H, YANG S L, YSEBAERT T, et al., 2008. Spatial difference mechanism of sludge sediment grain size in tidal wetlands of Yangtze delta[J]. China Environmental Science, 28(2): 178-182. (in Chinese with English abstract)
LI J, YANG S X, YE S Y, et al., 2019. Pollen and spore assemblages characteristics of alluvium around Bohai sea and its enlightenment to palynogical sources in the sea areas[J]. Marine Geology Frontiers, 35(12): 81-84. (in Chinese with English abstract)
LIU Z R, XUE H Y, WANG C S, 2021. Late Quaternary depositional characteristics and environment significance of the Xibozhang section in Baoding, central Hebei Plain, China[J]. Journal of Geomechanics, 27(6): 1011-1023. (in Chinese with English abstract)
LONG Y, ZHANG X B, LI M, et al., 2008. Identification of the deposited layers in landslides reservoir and investigation of the sediment yields during the later sixteenth century on the Hill Loess Plateau, China[J]. Chinese Science Bulletin, 53(24): 3908-3913.
MICALLEF A, CAMERLENGHI A, GARCIA-CASTELLANOS D, et al., 2018. Evidence of the Zanclean megaflood in the eastern Mediterranean Basin[J]. Scientific Reports, 8(1): 1078. DOI:10.1038/s41598-018-19446-3
QI L, WANG Y, CAI Y, et al., 2020. Paleoclimatic and paleoenvironmental evolution recorded by the aeolian sand-paleosol sequence in the Zoigê basin[J]. Journal of Geomechanics, 26(2): 244-251. (in Chinese with English abstract)
ST GEORGE S, HEFNER A M, AVILA J, 2020. Paleofloods stage a comeback[J]. Nature Geoscience, 13(12): 766-768. DOI:10.1038/s41561-020-00664-2
SUN Y B, GAO S, LI J, 2003. Preliminary analysis of environmentally sensitive particle size components in marginal sea-landsource materials[J]. Chinese Science Bulletin, 48(1): 83-86. (in Chinese) DOI:10.1360/csb2003-48-1-83
WANG J L, WU Z H, SUN Y J, et al., 2016. The origin and evolution of Qingyi River's deposits and terraces in West Sichuan, China[J]. Journal of Geomechanics, 22(3): 642-658. (in Chinese with English abstract)
WANG X S, YANG Z Y, LØVLIE R, et al., 2006. Environmental magnetic results and paleoclimatic significance of loess-paleosol sequence in the southeastern margin of the Loess Plateau[J]. Chinese Science Bulletin, 51(13): 1575-1582. (in Chinese) DOI:10.1360/csb2006-51-13-1575
WANG X Y, LU H Y, LI Z, et al., 2003. Paleoclimatic significance of mineral magnetic properties of loess sediments in northeastern Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin, 48(15): 1693-1699. (in Chinese) DOI:10.1360/csb2003-48-15-1693
WANG Y J, JIN B F, 2017. Comparative analysis of carbonates in sediments of the Yellow River and the Haihe River estuaries[J]. Marine Sciences, 41(7): 94-104. (in Chinese with English abstract)
WU Q L, ZHANG P Z, ZHANG H P, et al., 2009. A palaeo-earthquake induced damming and bursting of Yellow River and the abnormal flood that destroyed Lajia relic[J]. Science in China Series D-Earth Sciences, 39(8): 1148-1159. (in Chinese with English abstract)
XU L R, 2001. Studies on impacts of climate changes on hydrologic extremes in Mihe basin, Laizhou bay area of China[D]. Ji'nan: Shandong Normal University. (in Chinese with English abstract)
XU X W, QIANG X K, AN Z S, et al., 2010. Magnetic susceptibility of Heqing drill core and its palaeoenvironmental implications[J]. Journal of Geomechanics, 16(4): 372-382. (in Chinese with English abstract)
YANG B J, YU F L, ZHENG Z, et al., 2015. Changes in Holocene depositional environment of Qin'ao embayment on Nan'ao island inferred from sediment grain-size and loss-on-ignition[J]. Marine Geology and Quaternary Geology, 35(6): 41-51. (in Chinese with English abstract)
YU G, 2011. High-resolution records of lacustrine sedimentology and palynology responding to changes in climate and hydrology[J]. Acta Sedimentologica Sinica, 29(1): 118-124. (in Chinese with English abstract)
ZHAN W, YANG S Y, LIU X L, et al., 2010. Reconstruction of flood events over the last 150 years in the lower reaches of the Changjiang River[J]. Chinese Science Bulletin, 55(21): 2268-2274. DOI:10.1007/s11434-010-3263-8
ZHANG W H, MU G J, 2007. Precision control on measuring organic and carbonate content with loss on ignition method[J]. Arid Land Geography, 30(3): 455-459. (in Chinese with English abstract)
ZHANG X B, WALLING D E, HE X B, et al., 2005. A test of the pollen tracing technique for studies of vegetation changes, erosion and sedimentation in a small catchment in the loess plateau of China[J]. Quaternary Sciences, 25(6): 722-728. (in Chinese with English abstract)
ZHANG Y C, MA Z J, GAO Q H, et al., 2006. Huge disaster risk and prevention in China[J]. Journal of Geomechanics, 12(2): 119-126. (in Chinese with English abstract)
ZHOU H, WU L, ZHU C, et al., 2020. Feature of the great flood slackwater deposits in the Jingzhou-Gong'an section of middle reaches of the Yangtze River[J]. Journal of Stratigraphy, 44(1): 56-63. (in Chinese with English abstract)
安芷生, PORTER S, KUKLA G, 等, 1990. 最近13万年黄土高原季风变迁的磁化率证据[J]. 科学通报, 35(7): 529-532.
常婧, 惠争闯, 耿豪鹏, 等, 2017. 黑河中游现代孢粉传播过程研究[J]. 地理科学, 37(12): 1925-1932.
陈桥, 刘东艳, 陈颖军, 等, 2013. 粒级-标准偏差法和主成分因子分析法在粒度敏感因子提取中的对比[J]. 地球与环境, 41(3): 319-325.
高杨, 李滨, 冯振, 等, 2017. 全球气候变化与地质灾害响应分析[J]. 地质力学学报, 23(1): 65-77. DOI:10.3969/j.issn.1006-6616.2017.01.002
郭广军, 贺芳丁, 2018. 从台风影响谈对水库加固建设与管理的几点反思[J]. 中国水利, (20): 66-69. DOI:10.3969/j.issn.1000-1123.2018.20.017
何良彪, 1991. 黄河三角洲沿岸及邻近海区细粒沉积物中的碳酸盐[J]. 海洋科学, (3): 41-45.
胡彩莉, 马玉贞, 郭超, 等, 2016. 烧失量法测定土壤有机质含量的实验条件探究[J]. 地球与环境, 44(1): 110-118.
黄振国, 陈仲新, 刘芳清, 等, 2013. 基于HJ-1影像的大棚菜地遥感监测技术研究: 以山东寿光市为例[J]. 中国农业资源与区划, 34(5): 102-106.
李春海, 何翠玲, 2004. 黄土孢粉HF处理方法[J]. 微体古生物学报, 21(3): 346-348. DOI:10.3969/j.issn.1000-0674.2004.03.012
李华, 杨世伦, YSEBAERT T, 等, 2008. 长江口潮间带淤泥质沉积物粒径空间分异机制[J]. 中国环境科学, 28(2): 178-182. DOI:10.3321/j.issn:1000-6923.2008.02.017
李华勇, 张虎才, 陈光杰, 等, 2017. 云南高原湖泊表层沉积物粒度特征及环境指示意义[J]. 沉积学报, 35(3): 499-507.
李华勇, 唐倩玉, 张虎才, 等, 2020. MS2000激光粒度仪测量第四纪沉积物粒度的定量进样研究[J]. 海洋地质与第四纪地质, 40(2): 200-207.
李杰, 杨士雄, 叶思源, 等, 2019. 渤海陆缘入海河流冲积物孢粉组合特征及其对海域孢粉来源的启示[J]. 海洋地质前沿, 35(12): 81-84.
刘智荣, 薛怀宇, 王昌盛, 2021. 河北平原中部保定西伯章剖面晚第四纪沉积特征及其环境意义[J]. 地质力学学报, 27(6): 1011-1023.
綦琳, 王燕, 蔡遥, 等, 2020. 若尔盖风成砂-古土壤序列的古气候与古环境记录研究[J]. 地址力学学报, 26(2): 244-251.
孙有斌, 高抒, 李军, 2003. 边缘海陆源物质中环境敏感粒度组分的初步分析[J]. 科学通报, 48(1): 83-86. DOI:10.3321/j.issn:0023-074X.2003.01.021
王继龙, 吴中海, 孙玉军, 等, 2016. 青衣江河流沉积与阶地特征及其成因演化[J]. 地质力学学报, 22(3): 642-658. DOI:10.3969/j.issn.1006-6616.2016.03.019
王喜生, 杨振宇, LØVLIE R, 等, 2006. 黄土高原东南缘黄土-古土壤序列的环境磁学结果及其古气候意义[J]. 科学通报, 51(13): 1575-1582. DOI:10.3321/j.issn:0023-074X.2006.13.015
王晓勇, 鹿化煜, 李珍, 等, 2003. 青藏高原东北部黄土堆积的岩石磁学性质及其古气候意义[J]. 科学通报, 48(15): 1693-1699. DOI:10.3321/j.issn:0023-074X.2003.15.020
王艳君, 金秉福, 2017. 黄河河口段与海河河口段沉积物碳酸盐对比分析[J]. 海洋科学, 41(7): 94-104.
吴庆龙, 张培震, 张会平, 等, 2009. 黄河上游积石峡古地震堰塞溃决事件与喇家遗址异常古洪水灾害[J]. 中国科学D辑: 地球科学, 39(8): 1148-1159.
徐立荣, 2001. 气候变化对莱州湾地区水文极端事件的影响研究: 以弥河流域为例[D]. 济南: 山东师范大学.
徐新文, 强小科, 安芷生, 等, 2010. 鹤庆盆地湖相岩心磁化率记录及其古环境意义[J]. 地质力学学报, 16(4): 372-382. DOI:10.3969/j.issn.1006-6616.2010.04.005
杨冰洁, 余凤玲, 郑卓, 等, 2015. 南澳岛青澳湾沉积物粒度与烧失量指示的全新世沉积环境变化[J]. 海洋地质与第四纪地质, 35(6): 41-51.
于革, 2011. 高分辨湖泊沉积和孢粉记录对气候、水文变化的响应[J]. 沉积学报, 29(1): 118-124.
张文河, 穆桂金, 2007. 烧失法测定有机质和碳酸盐的精度控制[J]. 干旱区地理, 30(3): 455-459. DOI:10.3321/j.issn:1000-6060.2007.03.021
张信宝, WALLING D E, 贺秀斌, 等, 2005. 黄土高原小流域植被变化和侵蚀产沙的孢粉示踪研究初探[J]. 第四纪研究, 25(6): 722-728. DOI:10.3321/j.issn:1001-7410.2005.06.008
张业成, 马宗晋, 高庆华, 等, 2006. 中国的巨灾风险与巨灾防范[J]. 地质力学学报, 12(2): 119-126. DOI:10.3969/j.issn.1006-6616.2006.02.002
周慧, 吴立, 朱诚, 等, 2020. 长江中游荆州-公安段洪水滞流沉积物特征分析[J]. 地层学杂志, 44(1): 56-63.